2022届新高考数学人教版一轮课件:第三章 第七节 解三角形应用举例
展开知识点 测量中的有关术语
1.(易错题)若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的( )A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°
2.如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,则可以计算出A,B两点的距离为________ m.
3.如图,在山脚A测得山顶P的仰角为30°,沿倾斜角为15°的斜坡向上走a米到B,在B处测得山顶P的仰角为60°,则山高h=________米.
题型一 距离问题 合作探究 [例] (2021·宁德质检)海洋蓝洞是地球罕见的自然地理现象,被誉为“地球给人类保留宇宙秘密的最后遗产”,我国拥有世界上已知最深的海洋蓝洞.若要测量如图所示的海洋蓝洞的口径(即A,B两点间的距离),现取两点C,D,测得CD=80,∠ADB=135°,∠BDC=∠DCA=15°,∠ACB=120°,则图中海洋蓝洞的口径为________.
求距离问题的两个注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知,则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
[对点训练] (2021·福建厦门双十中学检测)如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P离地面的高度OP.在地面上的两点A,B测得点P的仰角分别为30°,45°,且∠ABO=60°,AB=80米,则OP为( )
题型二 高度问题 合作探究[例] 如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________ m.
利用正、余弦定理求解高度问题应注意的三个问题(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键. (2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.
[对点训练] 为了测量某新建的信号发射塔AB的高度,先取与发射塔底部B的同一水平面内的两个观测点C,D,测得∠BDC=60°,∠BCD=75°,CD=40 m,并在点C的正上方E处观测发射塔顶部A的仰角为30°,且CE=1 m,则发射塔高AB=________ m.
解析:如图,过点E作EF⊥AB,垂足为F,则EF=BC, BF=CE=1 m,∠AEF=30°.
题型三 角度问题 合作探究[例] 在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile的水面上,有蓝方一艘小艇正以每小时10 n mile的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.
测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.[提醒] 方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.
[对点训练]如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cs θ的值.
[对点训练] 《海岛算经》是中国学者刘徽编撰的一部测量数学著作,现有取自其中的一个问题:今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表参相直,从前表却行一百二十三步,人目着地,取望岛峰,与表末参合,从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合,问岛高几何?其大意为:如图所示,立两个三丈高的标杆BC和DE,两标杆之间的距离BD=1 000步,两标杆的底端与海岛的底端H在同一直线上,从前面的标杆B处后退123步,人眼贴地面,从地上F处仰望岛峰,A,C,F三点共线,从后面的标杆D处后退127步,人眼贴地面,从地上G处仰望岛峰,A,E,G三点也共线,则海岛的高为(注:1步=6尺,1里=180丈=1 800尺=300步)( )
2024年高考数学一轮复习第三章第八讲解三角形应用举例课件: 这是一份2024年高考数学一轮复习第三章第八讲解三角形应用举例课件,共37页。PPT课件主要包含了测量中的有关术语,考点一距离问题,图3-8-1,于计算的定理,图3-8-2,答案B,行140,图3-8-3,反思感悟,图3-8-5等内容,欢迎下载使用。
备战2024高考一轮复习数学(理) 第四章 三角函数与解三角形 第七节 解三角形应用举例课件PPT: 这是一份备战2024高考一轮复习数学(理) 第四章 三角函数与解三角形 第七节 解三角形应用举例课件PPT,共31页。PPT课件主要包含了顺时针等内容,欢迎下载使用。
高考数学一轮复习配套课件 第四章 第七节 解三角形应用举例: 这是一份高考数学一轮复习配套课件 第四章 第七节 解三角形应用举例,共45页。PPT课件主要包含了必备知识基础落实,关键能力考点突破,微专题,北偏东45°,答案B,答案A,答案C,北偏西15°,答案D等内容,欢迎下载使用。