数学17.5 一元二次方程的应用说课课件ppt
展开小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?
填空:1. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,去年生产1吨甲种药品的成本是4650 元,则下降率是 .如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.
下降前的量-下降后的量
2. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,设下降率是x,则去年生产1吨甲种药品的成本是 元,如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.
5000(1-x)(1-x)
例1 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,现在生产1吨甲种药品的成本是4050元,试求甲种药品成本的年平均下降率是多少?
解:设甲种药品的年平均下降率为x.根据题意,列方程,得
5 000 ( 1-x )2 = 4050,
根据问题的实际意义,甲种药品成本的年平均下降率约为10%.
下降率不可为负,且不大于1.
例2 某**学校去年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
解:设这个增长率为x.根据题意,得
答:这个增长率为50%.
200+200(1+x) +200(1+x)2=950,
4x2+12x-7=0,
x1(舍去),x2=0.5.
增长率不可为负,但可以超过1.
运用一元二次方程模型解决实际问题的步骤有哪些?
例3 要设计一本书的封面,封面长27cm,宽21cm正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到)
分析:这本书的长宽之比 : ,正中央的矩形长宽之比 : ,上下边衬与左右边衬之比 : .
解:设中央长方形的长和宽分别为9a和7a由此得到上下边衬宽度之比为:
解:设上下边衬的9xcm,左右边衬宽为7xcm. 依题意得
方程的哪个根合乎实际意义?为什么?
试一试:如果换一种设未知数的方法,是否可以更简单地解决上面的问题?
解:设正中央的矩形两边别为9xcm,7xcm.依题意得
主要集中在几何图形的面积问题, 这类问题的面积公式是等量关系. 如果图形不规则应割或补成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程;
根据题意得AP= xcm,PC=(6-x)cm,CQ=2xcm
解:若设点P,Q出发xs后可使△PCQ的面积为9cm²
解得 x1= x2=3
答:点P,Q出发3s后可使△PCQ的面积为9cm².
例5:如图,在一块长为 92m ,宽为 60m 的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为 885m2 的 6 个矩形小块,水渠应挖多宽?
解:设水渠宽为xm,将所有耕地的面积拼在一起,变成一个新的矩形,长为 (92–2x)m, 宽(60-x)m.(92-2x)(60-x)= 6×885.
解得 x1=105(舍去),x2=1.
注意:结果应符合实际意义
我们利用“图形经过移动,它的面积大小不会改变”的性质,把纵、横两条路移动一下,使列方程容易些(目的是求出水渠的宽,至于实际施工,仍可按原图的位置修路).
例6 一组学生组织春游,预计共需费用120元.后来又有2人参加进来,费用不变,这样每人可少分摊3元.问原来这组学生的人数是多少?
分析:设原来这组学生的人数是x人,则把体重信息整理成下表:
解:设原来这组学生的人数是x人,由题意得,
两边同乘x(x+2),整理,得,
x2+2x-80=0.
x1=-10,x2=8.
经检验x1=-10,x2=8都是原方程的根,但x1=-10不符合题意,所以取x=8.
答:原来这组学生是8人.
解分式方程应用题时,所得根不仅要检验根是否为增根,还要考虑它是否符合题意.
1.某厂今年一月份的总产量为500吨,三月份的总产量为720吨,平均每月增长率是x,列方程( )A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=5002.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为 .
2(1+x)+2(1+x)2=8
3. 在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=0
第二十一页,共28页。
4.青山村种的水稻去年平均每公顷产7200千克,今年平均每公顷产8712千克,求水稻每公顷产量的年平均增长率.
解:设水稻每公顷产量的平均增长率为x,根据题意,得 系数化为1得,直接开平方得,则
答:水稻每公顷产量的年平均增长率为10%.
7200(1+x)2=8712
第二十二页,共28页。
5. 如图1,在宽为20米,长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540平方米,求道路的宽.
解:设道路宽为x米,由平移得到图2,则宽为(20-x)米,长为(32-x)米,列方程得
(20-x)(32-x)=540,
整理得 x2-52x+100=0,
解得 x1=50(舍去),x2=2.
第二十三页,共28页。
能力提升菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克元的价格对外批发销售.(1)求平均每次下调的百分率;
解:设平均每次下调的百分率为x,由题意,得 5(1-x)2, 解得 x1=20%,x2=1.8 (舍去) ∴平均每次下调的百分率为20%.
第二十四页,共28页。
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.
解:小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.
第二十五页,共28页。
a(1+x)2=b,其中a为增长前的量,x为增长率,2为增长次数,b为增长后的量.
a(1-x)2=b,其中a为降低前的量,x为降低率,2为降低次数,b为降低后的量.注意1与x位置不可调换.
常见几何图形面积是等量关系.
第二十六页,共28页。
沪科版八年级下册17.5 一元二次方程的应用说课课件ppt: 这是一份沪科版八年级下册<a href="/sx/tb_c70399_t3/?tag_id=26" target="_blank">17.5 一元二次方程的应用说课课件ppt</a>,共14页。PPT课件主要包含了学习目标,新课导入,典型例题,剩下步骤与前面相同,当堂检测,解得t≤4等内容,欢迎下载使用。
沪科版八年级下册17.5 一元二次方程的应用背景图课件ppt: 这是一份沪科版八年级下册17.5 一元二次方程的应用背景图课件ppt,共12页。PPT课件主要包含了复习旧知,新知探究,未知数,等量关系,方程组,十月份,九月份,十一月份,十二月份,进价30等内容,欢迎下载使用。
初中数学沪科版八年级下册17.5 一元二次方程的应用图片课件ppt: 这是一份初中数学沪科版八年级下册17.5 一元二次方程的应用图片课件ppt,共12页。PPT课件主要包含了校区一角平面图,列方程解应用题,方法一,方法二,S≥0,S≤64等内容,欢迎下载使用。