冀教版九年级下册30.1 二次函数课时作业
展开
30.1二次函数同步练习冀教版初中数学九年级下册
一、选择题(本大题共12小题,共36.0分)
- 关于函数,下列说法不正确的是
A. y是x的二次函数 B. 二次项系数是
C. 一次项是100 D. 常数项是20000
- 若关于x的函数是二次函数,则a的取值范围是
A. B. C. D.
- 下列各式中表示二次函数的是
A. B.
C. D.
- 下列函数关系式中,y是x的二次函数是
A. B.
C. D.
- 下列函数中,不是二次函数的是
A. B.
C. D.
- 下列函数不属于二次函数的是
A. B.
C. D.
- 下列函数关系中,y是x的二次函数的是
A. B. C. D.
- 下列函数解析式中,一定是二次函数的是
A. B.
C. D.
- 下列函数是二次函数的是
A. B. C. D.
- 已知函数为二次函数,则m的取值范围是
A. m B. m
C. m D. m,且m
- 下列函数中是二次函数的是
A. B.
C. D.
- 下列函数关系中是二次函数的是
A. 正三角形面积与边长的关系
B. 直角三角形两锐角A与的关系
C. 矩形面积一定时,长与宽的关系
D. 等腰三角形顶角A与底角的关系
二、填空题(本大题共6小题,共18.0分)
- 函数是二次函数,则______.
- 若函数是关于x的二次函数,则a的值为 .
- 关于x的函数是二次函数,则______.
- 已知函数是二次函数,则常数m的取值范围是______ .
- 若是二次函数,则______.
- 设圆的半径为r,请填空:
这个圆的周长C________,它是r的________函数;
这个圆的面积S________,它是r的________函数.
三、解答题(本大题共7小题,共56.0分)
- 已知函数.
若这个函数是一次函数,求m的值;
若这个函数是二次函数,则m的值应怎样?
- 在下列表达式中,哪些是二次函数?
正常情况下,一个人在运动时每分所能承受的最高心跳次数b与这个人的年龄a之间的关系可表示为
;
圆锥的高为h,它的体积V与底面半径r之间的关系可表示为
为定值;
物体自由下落时,下落高度h与下落时间t之间的关系可表示为
为定值;
导线的电阻为R,当导线中有电流通过时,电功率P与电流I之间的关系可表示为
为定值.
- 若二次函数的图像过原点,求m的值.
- 已知函数.
当m为何值时,此函数是一次函数?
当m为何值时,此函数是二次函数?
- 证明:对于任何实数m,都是y关于x的二次函数.
- 已知.
当m为何值时,y是x的正比例函数?
当m为何值时,y是x的二次函数?
当m为何值时,y是x的反比例函数?
- 当m为何值时,是二次函数?
答案和解析
1.【答案】C
【解析】
【分析】
本题考查了二次函数的定义,将其化成二次函数的一般式是解题关键.一般地,形如、b、c是常数,的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.
根据二次函数的定义即可解答.
【解答】
解:原函数展开整理得,
是x的二次函数,故A正确;
二次项系数是,故B正确;
一次项是100x,故C错误;
常数项是20000,故D正确.
故选C.
2.【答案】B
【解析】解:函数是二次函数,
,即,
故选:B.
根据二次函数的定义即可得.
本题主要考查二次函数的定义,熟练掌握形如、b、c是常数,的函数,叫做二次函数是解题的关键.
3.【答案】B
【解析】解:A、,含有分式,故不是二次函数,故此选项错误;
B、,是二次函数,故此选项正确;
C、含有分式,故不是二次函数,故此选项错误;
D、,是一次函数,故此选项错误.
故选:B.
利用二次函数的定义分别分析得出即可.
此题主要考查了二次函数的定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.
4.【答案】C
【解析】略
5.【答案】D
【解析】解:A、是二次函数;
B、,是二次函数;
C、,是二次函数;
D、,是一次函数;
故选:D.
将各函数整理成一般式后根据二次函数定义判断即可.
本题主要考查二次函数的定义,掌握二次函数的定义:形如、b、c是常数,的函数叫做二次函数是解题的关键.
6.【答案】D
【解析】解:A、整理为,是二次函数,不合题意;
B、整理为,是二次函数,不合题意;
C、整理为,是二次函数,不合题意;
D、整理为,是一次函数,符合题意.
故选:D.
整理一般形式后根据二次函数的定义判定即可解答.
本题考查二次函数的定义.
7.【答案】C
【解析】
【分析】
此题主要考查了二次函数的定义,属于基础题,注意掌握二次函数的定义,形如、b、c是常数,的函数是二次函数.
根据二次函数的定义可求解.
【解答】
解:该函数式中,y是x的一次函数,故本选项错误;
B.被开方数中含自变量,不是二次函数,故本选项错误.
C.该函数符合二次函数的定义,故本选项正确;
D.分母中含自变量,不是二次函数,故本选项错误;
故选:C.
8.【答案】C
【解析】
【分析】
此题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.
根据二次函数的定义:一般地,形如、b、c是常数,的函数,叫做二次函数进行分析.
【解答】
解:A、是一次函数,故此选项错误;
B、当时,不是二次函数,故此选项错误;
C、是二次函数,故此选项正确;
D、含有分式,不是二次函数,故此选项错误;
故选:C.
9.【答案】C
【解析】解:A、该函数是一次函数,故本选项不符合题意;
B、该函数是反比例函数,故本选项不符合题意;
C、该函数是二次函数,故本选项符合题意;
D、该函数不是函数,故本选项不符合题意.
故选:C.
根据二次函数的定义判断即可.
此题主要考查了二次函数定义,关键是掌握形如、b、c是常数,的函数,叫做二次函数.
10.【答案】D
【解析】解:由为二次函数,得
,解得,且,
故选:D.
根据形如函数是二次函数,可得答案.
本题考查了二次函数的定义,注意二次函数的二次项的系数不等于零是解题关键.
11.【答案】B
【解析】
【分析】
此题主要考查了一次函数以及二次函数的定义,正确把握相关定义是解题关键.直接利用一次函数以及二次函数的定义分别分析得出答案.
【解答】
解:,是一次函数,故此选项错误;
B. ,是二次函数,故此选项正确;
C.化简为,故此选项错误;
D. ,不是二次函数,故此选项错误;
故选B.
12.【答案】A
【解析】
【分析】
本题考查了二次函数的定义,解题关键是掌握二次函数的定义条件:二次函数的定义条件是:a、b、c为常数,,自变量最高次数为2.
根据二次函数的定义,分别列出关系式,进行选择即可.
【解答】
解:A、关系式为:,故本选项正确;
B、关系式为:,故本选项错误;
C、关系式为:,故本选项错误;
D、关系式为:,故本选项错误;
故选:A.
13.【答案】1
【解析】解:由二次函数的定义可知,当时,该函数是二次函数
故答案为:1.
根据二次函数的定义,必须二次项系数不等于0,且未知数的次数等于2,据此列不等式组并求解即可.
本题考查了二次函数的定义,明确二次函数的定义并正确列式,是解题的关键.
14.【答案】1
【解析】解:由题意得且,解得.
15.【答案】
【解析】解:由题意得:,且,
解得:,
故答案为:.
利用二次函数定义进行解答即可.
此题主要考查了二次函数定义,关键是掌握形如、b、c是常数,的函数,叫做二次函数.
16.【答案】
【解析】解:根据题意得:,
解得:.
故答案是:
根据二次函数的定义与一般形式即可求解.
本题考查了二次函数的定义,一般形式是,且a,b,c是常数,x是未知数.
17.【答案】
【解析】解:由题意得:,且,
解得:,
故答案为:.
根据二次函数定义可得,且,再解出m的值即可.
此题主要考查了二次函数定义,解题的关键是掌握一般地,形如、b、c是常数,的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.、b、c是常数,也叫做二次函数的一般形式.
18.【答案】;正比例
;二次
【解析】
【分析】
本题考查了函数关系式,正比例函数和二次函数的定义等知识.
根据圆的周长公式可得答案;
根据圆的面积公式可得答案;
【解答】
解:根据圆的周长公式得,它是r的正比例函数.
根据圆的面积公式得,它是r的二次函数.
19.【答案】解:依题意得
;
依题意得,
且.
【解析】本题考查了一次函数的定义以及二次函数的定义,二次函数的二次项的系数不等于零是解题关键.
根据二次项的系数等于零,一次项的系数不等于零,可得关于方程的方程组,解方程组可得答案;
根据二次项的系数不等于零,可得不等式,根据解不等式,可得答案.
20.【答案】解:,是一次函数.
为定值,是二次函数.
为定值,是二次函数.
为定值,是二次函数.
【解析】本题考查的是二次函数的定义,一次函数的定义等知识,掌握二次函数的一般形式:、b、c是常数且是解题的关键.根据二次函数的定义和一次函数的定义依次进行判断即可.
21.【答案】解:二次函数的图像过原点,
,
即,
或,
当时,
不是二次函数,
故不符合题意,
当时,
,
.
【解析】此题考查了二次函数的定义,二次函数的图象,因式分解法解一元二次方程,根据二次函数的图像过原点,得到,解得或,当时,不是二次函数,不符合题意,当时,,即可得到m的值.
22.【答案】解:是一次函数,
且,
解得,
当时,此函数是一次函数
是二次函数,
,
解得且.
当且时,此函数是二次函数.
【解析】本题考查了二次函数的概念,一次函数的概念,一次函数的一次项系数不等于零,二次项系数等于零是解题关键,注意二次函数的二次项系数不等于零.
根据形如是一次函数,可得答案;
根据形如是二次函数,可得答案.
23.【答案】证明:的二次项系数为,
又,
对于任何实数m,都是y关于x的二次函数.
【解析】本题主要考查的是二次函数的定义,熟练掌握二次函数的定义是解题的关键.证明二次项系数不为零即可.
24.【答案】解:由题意,得
解得;
由题意,得
解得;
由题意,得
解得.
【解析】本题考查了正比例函数的定义,反比例函数的定义,二次函数的概念.
根据正比例函数的定义,可得即可求得答案;
根据二次函数的概念,可得即可求得答案;
根据反比例函数的定义,可得即可求得答案.
25.【答案】解:由题意得
,
解得:.
【解析】本题主要考查的是二次函数的定义的有关知识,由题意可以得到,求解即可.
冀教版九年级下册30.1 二次函数课时作业: 这是一份冀教版九年级下册30.1 二次函数课时作业,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
数学九年级下册30.1 二次函数随堂练习题: 这是一份数学九年级下册30.1 二次函数随堂练习题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
冀教版九年级下册30.1 二次函数同步达标检测题: 这是一份冀教版九年级下册30.1 二次函数同步达标检测题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。