高考数学一轮复习第三章三角函数、解三角形第7讲解三角形的综合应用课件
展开1.实际问题中的常用术语
2.实际测量中的常见问题
坡度——坡面与水平面所成二面角的正切值.
1.(课本改编)两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站北偏东40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )A.北偏东10° B.北偏西10°C.南偏东10° D.南偏西10°
[解析] 由题可知∠ABC=50°,A、B、C位置如图,故选B.
2.(2018·宁夏银川一中月考)如图,设A,B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是m米,∠BAC=α,∠ACB=β,则A,B两点间的距离为( )
4.要测量顶部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为( )
角度1 测量距离问题 如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.[分析] 欲求AB只需解△ABC,因为∠ACB=30°,所以需求AC、BC.从而需解△ACD、△BCD.
考点1 三角形的实际应用——多维探究
距离问题的常见类型及解法(1)类型:测量距离问题常分为三种类型:山两侧、河两岸、河对岸.(2)解法:选择合适的辅助测量点,构造三角形,将实际问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.注意:①基线的选取要恰当准确;②选取的三角形及正、余弦定理的应用要恰当.若图中涉及到多个三角形,则先解可解三角形,借助公共边、公共角再解其它三角形从而求解.
求解高度问题的三个关注点(1)在处理有关高度问题时,要理解仰角、俯角(在铅垂面上所成的角)、方向(位)角(在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题
易错提醒:解三角形实际问题时注意各个角的含义,根据这些角把需要的三角形的内角表示出来.而容易出现的错误是把角的含义弄错,把这些角与要求解的三角形的内角之间的关系弄错.
[分析] 根据题意在图中标注已知条件,先使用余弦定理求BC,再使用正弦定理求角度.
角度问题的解题方法首先应明确方位角的含义,在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步,通过这一步可将实际问题转化成可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.提醒:方向角是相对于某点而言的,因此确定方向角时,首先要弄清是哪一点的方向角.
考点2 三角形与三角函数的综合问题——师生共研
三角形与三角函数的综合问题,要借助三角函数性质的整体代换思想,数形结合思想,还要结合三角形中角的范围,充分利用正弦定理、余弦定理解题.
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.[分析] (1)利用三角形中的余弦定理,将航行距离表示为时间t的函数.将原题转化为函数最值问题;(2)注意t的取值范围.
函数思想在解三角形中的应用
三角形在实际中的应用问题有很多是求距离最短、用时最少、速度最大等最值问题,这需要建立有关量的函数关系式,通过求函数最值的方法来解决.函数思想在解三角形实际问题中的应用,经常与正弦定理、余弦定理相结合,此类问题综合性较强,能力要求较高,要有一定的分析问题、解决问题的能力.
高考数学一轮总复习课件第3章三角函数解三角形第八讲解三角形应用举例(含解析): 这是一份高考数学一轮总复习课件第3章三角函数解三角形第八讲解三角形应用举例(含解析),共44页。PPT课件主要包含了测量中的有关术语,图3-8-1,答案A,题组三真题展现,图3-8-3,A346,B373,C446,D473,答案B等内容,欢迎下载使用。
2024届高考数学一轮总复习第三章三角函数解三角形第八讲解三角形应用举例课件: 这是一份2024届高考数学一轮总复习第三章三角函数解三角形第八讲解三角形应用举例课件,共37页。PPT课件主要包含了测量中的有关术语,考点一距离问题,图3-8-1,于计算的定理,图3-8-2,答案B,行140,图3-8-3,反思感悟,图3-8-5等内容,欢迎下载使用。
2024年高考数学一轮复习第三章第八讲解三角形应用举例课件: 这是一份2024年高考数学一轮复习第三章第八讲解三角形应用举例课件,共37页。PPT课件主要包含了测量中的有关术语,考点一距离问题,图3-8-1,于计算的定理,图3-8-2,答案B,行140,图3-8-3,反思感悟,图3-8-5等内容,欢迎下载使用。