终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第22章 二次函数 专题复习-试卷 2020-2021学年人教版数学九年级上册(word版含答案)

    立即下载
    加入资料篮
    第22章 二次函数 专题复习-试卷 2020-2021学年人教版数学九年级上册(word版含答案)第1页
    第22章 二次函数 专题复习-试卷 2020-2021学年人教版数学九年级上册(word版含答案)第2页
    第22章 二次函数 专题复习-试卷 2020-2021学年人教版数学九年级上册(word版含答案)第3页
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级上册第二十二章 二次函数综合与测试课堂检测

    展开

    这是一份数学九年级上册第二十二章 二次函数综合与测试课堂检测,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2020-2021年九年级数学人教版(上)二次函数 专题复习一、选择题(本大题共12道小题)1. 抛物线的对称轴是(      A.直线       B.直线     C.    D.直线2. 抛物线轴有两个交点,且开口向下,则的取值范围分别是(     A.     B.      C.       D.  3. 抛物线的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为,则的值为(   A、     B、     C、       D、4. 二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x-3-2-101y-3-2-3-6-11则该函数图象的对称轴是(  )A. 直线x=-3  B. 直线x=-2C. 直线x=-1  D. 直线x=05. 把二次函数y =的图象向上平移3个单位,再向右平移4个单位,则两次平移后的图象的解析式是(   )A.- 1)2 +7       B.+7)2 +7  C.+3)2 +4       D.-1)2 +16. 已知函数y=ax2-2ax-1(a是常数,a0),下列结论正确的是(  )A. 当a=1时,函数图象过点(-1,1)B. 当a=-2时,函数图象与x轴没有交点C. 若a>0,则当x1时,y随x的增大而减小D. 若a<0,则当x1时,y随x的增大而增大7. 关于二次函数y=ax2+bx +c图像有下列命题: (1)当c=0时,函数的图像经过原点;(2)当c >0时,函数的图像开口向下时,方程ax2 +bx + c =0 必有两个不等实根; (3)当b=0时,函数图像关于原点对称.其中正确的个数有(    ) A.0个   B.1个   C.2个   D.3个8. 如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于(    (A)8;  (B)14;  (C)8或14;  (D)-8或-149. 已知函数y=x2+x1,当mxm+2时,y1,则m的取值范围(  )A.m≥﹣2 B.2m≤﹣1 C.2m D.m≤﹣110. 对应值如下表:下列结论:ac<0;当x>1时,y的值随x的增大而减小;3是方程ax2+(b-1)x+c=0的一个根;当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为(   )A.4个  B.3个  C.2个  D.1个11. 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点.现有以下四个结论:该抛物线的对称轴在y轴左侧;关于x的方程ax2+bx+c+2=0无实数根;a-b+c0;的最小值为3.其中,正确结论的个数为(  )A. 1个  B. 2个  C. 3个  D. 4个12. 某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是(  )A.y=30010x B.y=300(6040x) C.y=(300+10x)(6040x) D.y=(30010x)(6040+x)二、填空题(本大题共8道小题)13. 若一条抛物线与的形状相同且开口向上,顶点坐标为(0,2),则这条抛物线的解析式为           14. 若二次函数的图象经过点(-1,0),(1,-2),当的增大而增大时,的取值范围是             15. 如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上的一点,BE=DF.四边形AEGF是矩形,矩形AEGF的面积y与BE的长x的函数关系是        .16. 抛物线如右图所示,则它关于轴对称的抛物线的解析式是__________.17. 隧道的截面是抛物线形,且抛物线的解析式为y=-x2+3.25,一辆车高3 m,宽4 m,该车_____通过该隧道.(填不能)18. 如图,A、B、C是二次函数y=ax2+bx+c(a0)的图像上三点,根据图中给出的三点的位置,可得a_______0,c________0, ________0.19. 老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x<2时,y随x的增大而减小。丁:当x<2时,y>0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________20. 若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0)、B(x2,0)两点,则的值为________.三、解答题(本大题共7道小题)21. 已知直线和抛物线相交于点,求的值;       22. 如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上. (1)求抛物线的解析式; (2)设点A的横坐标为t(t>4),矩形ABCD的周长为l 求l与t之间函数关系式.       23. 把一个足球垂直于水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米),适用公式h=20t-5t2(0t4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t的值;(3)若存在实数t1和t2(t1t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.        24. 已知,抛物线y=ax2+bx+c(a0)经过原点,顶点为A(h,k)(h0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2h<1时,求a的取值范围.        25. .在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为B(6,5).    (1)求这个二次函数的表达式;(2)该男生把铅球推出去多远?(精确到0.01米).      26. 2019年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2020年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量)(1)求2020年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系。(2)该厂要是2020年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?     27. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.      答案一、选择题(本大题共12道小题)1. 【答案】C      2. 【答案】D     3. 【答案】C     4. 【答案】B 【解析】由表格的数据可以看出,x=-3和x=-1时y的值相同,都是-3,所以可以判断出,点(-3,-3)和点(-1,-3)关于二次函数图象的对称轴对称,利用公式x=,可求出对称轴为直线x==-2.5. 【答案】A  点拨:此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.(平移含两个方向:一是左右平移,二是上下平移.左右平移时,对应点纵坐标不变;上下平移时,对应点横坐标不变.) 6. 【答案】D 【解析】当a=1时,函数为y=x2-2x-1,当x=-1时,y=1+2-1=2,其图象经过点(-1,2),不过点(-1,1),所以A选项错误;当a=-2时,函数为y=-2x2+4x-1,b2-4ac=16-4×(-2)×(-1)=8>0,抛物线与x轴有两个交点,故选项B错误;当a>0时,抛物线的开口向上,它的对称轴是直线x=-=1,当x1,在对称轴的右侧,y随x的增大而增大,所以C选项错误;当a<0时,抛物线的开口向下,它的对称轴是直线x=-=1,当x1,在对称轴的左侧,y随x的增大而增大,所以D选项正确.
    7. 【答案】C   8. 【答案】C9. 【答案】解:函数y=x2+x1=(x2该函数图象开口向上,当x是,该函数取得最小值,当y=1时,x12,x2=1,当mxm+2时,y1,解得2m≤﹣1,故选:B. 10. 【答案】B 11. 【答案】D 【解析】序号逐项分析正误b>a>0,对称轴-<0,即对称轴在y轴左侧抛物线y=ax2+bx+c与x轴最多有一个交点,且抛物线开口向上,y=ax2+bx+c0,方程ax2+bx+c+2=0即ax2+bx+c=-2无实数根得y=ax2+bx+c0,当x=-1时,a-b+c0当x=-2时,y=4a-2b+c0,a+b+c3b-3a,a+b+c3(b-a),b>a,312. 【答案】解:每涨价1元,每星期要少卖出10件,每件涨价x元,销售每件的利润为(6040+x)元,每星期的销售量为(30010x),每星期售出商品的利润y=(30010x)(6040+x).故选:D. 二、填空题(本大题共8道小题)13. 【答案】            14. 【答案】              15. 【答案】解:设BE的长度为x(0x<4),则AE=4x,AF=4+x,y=AEAF=(4x)(4+x)=16x2故答案为:y=16x2(0x<4).16. 【答案】 y=x2+4x+3 点拨:这是一道很容易出错的题目.根据对称点坐标来解.因为点(1,0),(3,0),(0,3)关于y轴的对称点是(-1,0),(-3,0),(0,3).所以关于y轴对称的抛物线就经过点(-1,0),(-3,0),(0,3)然后利用待定系数法求解即可. 17. 【答案】不能 18. 【答案】<、<、>; 19. 【答案】略; 20. 【答案】-4 【解析】由题意可知,x1,x2为方程2x2-4x-1=0的两根,所以x1+x2=2,x1x2=-,则=-4.三、解答题(本大题共7道小题)21. 【答案】22. 【答案】23. 【答案】解:(1)当t=3时,h=20t-5t2=20×3-5×9=15(米),此时足球距离地面的高度为15米.(2分)(2)h=10,20t-5t2=10,即t2-4t+2=0,解得t1=2+,t2=2-经过2+或2- 秒时,足球距离地面的高度为10米.(4分)(3)m0,由题意得t1和t2是方程20t-5t2=m的两个不相等的实数根,b2-4ac=(-20)2-20m>0,m<20,m的取值范围是0m<20.(8分) 24. 【答案】(1)【思路分析】设出抛物线的顶点式,已知顶点坐标和抛物线过原点,即可得抛物线的解析式;解:根据题意,设抛物线的解析式为y=a(x-h)2+k(a0).h=1,k=2,y=a(x-1)2+2,(1分)抛物线经过原点,a+2=0,解得a=-2.(2分)抛物线的解析式为y=-2(x-1)2+2,即y=-2x2+4x.(3分)(2)【思路分析】将A点代入抛物线y=tx2中,得到h与k的关系式,代入抛物线的顶点式化简,即可得到a与t的关系式;解:抛物线y=tx2(t0)经过点A(h,k),k=th2y=a(x-h)2+th2,(4分)抛物线经过原点,ah2+th2=0,(5分)h0,a=-t.(6分)(3)【思路分析】同(2)的方法得到a与h的关系式,注意自变量的取值范围,可分类讨论.解:点A(h,k)在抛物线y=x2-x上,k=h2-h,y=a(x-h)2+h2-h,抛物线经过原点,ah2+h2-h=0,h0,a=-1.(8分)分两类讨论:当-2h<0时,由反比例函数性质可知a当0<h<1时,由反比例函数性质可知>1,a>0.综上所述,a的取值范围是a或a>0.(10分)25. 【答案】(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a=.    故y=(x-6)2+5    (2)由 (x-6)2+5=0,得x1=.   结合图象可知:C点坐标为(,0)    故OC=13.75(米)    即该男生把铅球推出约13.75米 26. 【答案】y=-1200x2+400x+4000;11400,10600; 27. 【答案】解:(1)当1x<50时,y=(x+40-30)(200-2x)=-2x2+180x+2000;当50x90时,y=(90-30)(200-2x)=-120x+12000.综上,y=(2)当1x<50时,y=-2x2+180x+2000=-2(x-45)2+6050,a=-2<0,当x=45时,y有最大值,最大值为6050元;当50x90时,y=-120x+12000,k=-120<0,y随x的增大而减小,当x=50时,y有最大值,最大值为6000元.综上可知,当x=45时,当天的销售利润最大,最大利润为6050元 (3)41
     

    相关试卷

    人教版九年级上册第二十二章 二次函数综合与测试当堂检测题:

    这是一份人教版九年级上册第二十二章 二次函数综合与测试当堂检测题,共21页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    人教版九年级上册第二十二章 二次函数综合与测试课后练习题:

    这是一份人教版九年级上册第二十二章 二次函数综合与测试课后练习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学人教版九年级上册第二十二章 二次函数综合与测试巩固练习:

    这是一份初中数学人教版九年级上册第二十二章 二次函数综合与测试巩固练习,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map