苏科版数学九年级上册期中模拟试卷06(含答案)
展开这是一份苏科版数学九年级上册期中模拟试卷06(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
苏科版数学九年级上册期中模拟试卷
一、选择题
1. 下列方程中,是一元二次方程的是···································【 ▲ 】
A.x+2y=1 B.x2-2xy=0 C.x2+=3 D.x2-2x+3=0
2. 下列图形中,不是中心对称图形的是·································【 ▲ 】
A.正方形 B.正五边形 C.正六边形 D.正八边形
3. 已知⊙O的半径为5cm,点A到圆心O的距离OA=5cm,则点A与⊙O的位置关系为···【 ▲ 】
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
4. 已知直角三角形的两条直角边长分别为6和8,它的内切圆半径是············【 ▲ 】
A.2 B.2.4 C.5 D.6
5. 已知关于x的一元二次方程=0有一个解为0,则的值为
【 ▲ 】
A. B. C. D.
6. 如图,点A、B、C、D都在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,
则∠ADC的度数为····················································【 ▲ 】
A.30° B.45° C.60° D.90°
二、填空题
7. 一元二次方程x2=2x的解为 ▲ .
8. 数据2,3,4,4,5的众数为 ▲ .
9. 圆内接正六边形的一条边所对的圆心角的度数为 ▲ .
10.一只自由飞行的小鸟,如果随意落在如图所示的方格地面上(每个小方格形状完全相同),那么小鸟落在阴影方格地面上的概率是 ▲ .
11.若a是方程x2-x-1=0的一个根,则2a2-2a+5= ▲ .
12.某药品原价为每盒25元,经过两次连续降价后,售价为每盒16元.若该药品平均每次降价的百分数是x,则可列方程为 ▲ .
13.如图,正方形ABCD的边长为4,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是 ▲ .(结果保留)
14.某种蔬菜按品质分成三个等级销售,销售情况如下表:
等级 | 单价(元/千克) | 销售量(千克) |
一等 | 5.0 | 20 |
二等 | 4.5 | 40 |
三等 | 4.0 | 40 |
则售出蔬菜的平均单价为 ▲ 元/千克.
15.如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=8cm,C是上的一个动点(点C与A、B两点不重合),过点C作⊙O的切线,分别交PA、PB于点D、E,则△PED的周长是 ▲ cm.
16.如图,四边形ABCD中,AB=AD,连接对角线AC、BD,若AC=AD,∠CAD=76°,则∠CBD=________°.
三、解答题
17.解方程:=0.(用配方法)
18.某公司招聘一名部门经理,对A、B、C三位候选人进行了三项测试,成绩如下(单位:分):
候选人 | 语言表达 | 微机操作 | 商品知识 |
A | 60 | 80 | 70 |
B | 50 | 70 | 80 |
C | 60 | 80 | 65 |
如果语言表达、微机操作和商品知识的成绩按3∶3∶4计算,那么谁将会被录取?
19.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2 cm,扇形的圆心角=120°.
(1)求该圆锥的母线长l;
(2)求该圆锥的侧面积.
20.一个不透明的口袋中装有2个红球(记为红1、红2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;
(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用画树状图或列表法求两次都摸到红球的概率.
21.甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根据以上数据完成下表:
| 平均数 | 中位数 | 方差 |
甲 | 8 | 8 | ▲ |
乙 | 8 | 8 | 2.2 |
丙 | 6 | ▲ | 3 |
(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.
22.已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使⊙O经过A、C两点,且圆心落在AB边上;
(要求:尺规作图,保留作图痕迹,不写作法.)
(2)求证:BC是(1)中所作⊙O的切线.
23.已知关于x的一元二次方程x2-2x-m2=0.
(1)求证:该方程有两个不相等的实数根;
(2)若该方程有两个实数根为x1,x2,且x1=2x2+5,求m的值.
24.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
25.小颖妈妈的网店加盟了“小神龙”童装销售,有一款童装的进价为60元/件,售价为100元/件,因为刚加盟,为了增加销量,准备对大客户制定如下促销优惠方案:
若一次购买数量超过10件,则每增加一件,所有这一款童装的售价降低1元/件.
例如:一次购买11件时,这11件的售价都为99元/件.请解答下列问题:
(1)一次购买20件这款童装的售价为 ▲ 元/件,所获利润为 ▲ 元;
(2)促销优惠方案中,一次购买多少件这款童装,所获利润为625元?
26.如图,在扇形AOB中,OA、OB是半径,且OA=4,∠AOB=120°.点P是弧AB上的一个动点,连接AP、BP,分别作OC⊥PA,OD⊥PB,垂足分别为C、D,连接CD.
(1)如图①,在点P的移动过程中,线段CD的长是否会发生变化?若不发生变化,请求出线段CD的长;若会发生变化,请说明理由;
(2)如图②,若点M、N为的三等分点,点I为△DOC的外心.当点P从点M运动到N点时,点I所经过的路径长为__________.(直接写出结果)
27.如图,AB是⊙O的直径,点C,D分别在两个半圆上(不与点A、B重合),AD、BD的长分别是关于x的方程=0的两个实数根.
(1)求m的值;
(2)连接CD,试探索:AC、BC、CD三者之间的等量关系,并说明理由;
(3)若CD=,求AC、BC的长.
参考答案
一、选择题(每小题3分,共18分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 |
答案 | D | B | A | A | B | C |
二、填空题(每小题3分,共30分)
7. x1=0,x2=2. 8. 4. 9. 60°. 10..
11.7. 12.25(1-x)2=16. 13.. 14.4.4.
15.16. 16.38°.
三、解答题
17.(本题满分6分)
解:=.
=.······························································2分
=3.······························································3分
=7.······························································4分
∴=,=.·························································6分
(说明:根写对一个给1分)
18.(本题满分7分)
解:A的成绩==70(分);············································2分
B的成绩==68(分);················································4分
C的成绩==68(分).················································6分
∵A的成绩最高,
∴A将会被录取.·····················································7分
19.(本题满分7分)
解:(1)由题意,得=.··············································3分
∴==6(cm).·····················································4分
(2)S侧==(cm2).················································7分
20.(本题满分8分)
解:(1).························································3分
(2)用表格列出所有可能出现的结果:···································6分
| 红1 | 红2 | 白球 | 黑球 |
红1 |
| (红1,红球2) | (红1,白球) | (红1,黑球) |
红2 | (红2,红球1) |
| (红2,白球) | (红2,黑球) |
白球 | (白球,红1) | (白球,红2) |
| (白球,黑球) |
黑球 | (黑球,红1) | (黑球,红2) | (黑球,白球) |
|
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能. 7分
∴P(两次都摸到红球)==.··········································8分
21.(本题满分8分)
(1)甲的方差为2;··················································3分
丙的中位数为6.·····················································6分
(2)∵甲的方差<乙的方差<丙的方差,而方差越小,数据波动越小,···········7分
∴甲的成绩最稳定.··················································8分
22.(本题满分8分)
(1)解:如答图所示,⊙O就是所要求作的圆.·····························4分
(2)证明:连接OC.
∵∠BOC=2∠A=50°,∠B=40°,
∴∠BOC=90°.·····················································6分
∴OC⊥BC.·························································7分
∴BC是(1)中所作⊙O的切线.·········································8分
23.(本题满分10分)
(1)证明:∵b2-4ac=(-2)2-4(-m2)=4+4m2.·························2分
∵≥0,
∴4+4m2>0.
∴b2-4ac>0.
∴该方程有两个不相等的实数根.········································4分
(2)解:由题意,得x1+x2=2,x1x2= -m2.····························5分
又∵x1=2x2+5,
∴x1=3,x2=-1.··················································7分
∴-m2=-3,即m2=3.
解得m=.··························································8分
24.(本题满分10分)
(1)证明:连结OD.
∵OB=OD,
∴∠ABC=∠ODB.
∵AB=AC,
∴∠ABC=∠ACB.
∴∠ODB=∠ACB.
∴OD∥AC.·························································3分
∵DF是⊙O的切线,
∴DF⊥OD.
∴DF⊥AC.·························································5分
(2)连结OE.
∵DF⊥AC,∠CDF=22.5°,
∴∠ABC=∠ACB=67.5°.
∴∠BAC=45°.·····················································7分
∵OA=OE,
∴∠AOE=90°.
∴⊙O的半径为4,
∴S扇形AOE=,S△AOE=8.············································9分
∴S阴影=S扇形AOE-S△AOE=-8.·····································10分
25.(本题满分12分)
解:(1)售价为90;·················································3分
利润为600.························································6分
(2)设一次购买x件这款童装,所获利润为625元.根据题意,得
=625.····························································9分
解得x1=x2=25.…………………………………………………………………………11分
答:一次购买25件这款童装,所获利润为625元.····························12分
26.(本题满分12分)
解:(1)线段CD的长不会发生变化.·····································2分
连接AB,过O作OH⊥AB于H.
∵OC⊥PA,OD⊥PB,
∴AC=PC,BD=PD.
∴CD=AB. 4分
∵OA=OB,OH⊥AB,
∴AH=BH=AB,∠AOH=∠AOB=60°.····································5分
在Rt△AOH中,∵∠OAH=30°,
∴OH==2.························································6分
∴在Rt△AOH,由勾股定理得AH==.·····································8分
∴AB=.
∴CD=.···························································9分
(2).···························································12分
27.(本题满分14分)
解:(1)由题意,得 b2-4ac≥0.
∴≥0.
化简整理,得 ≥0.·················································2分
∴≤0,即≤0.······················································3分
又∵≥0,
∴=5.····························································4分
(2)AC+BC=CD.···················································6分
理由是:如图,由(1),得 当m=5时,b2-4ac.
∴ AD=BD.························································7分
∵AB是⊙O的直径,
∴∠ACB=∠ADB=90°.
将△ADC绕点D逆时针旋转90°后,得△BDE.
∴△ADC≌△BDE.
∴∠DAC=∠DBE.
∵∠DAC+∠DBC=180°,
∴∠DBE+∠DBC=180°.
∴点C、B、E三点共线.
∴△CDE为等腰直角三角形.············································9分
∴CE=CD.
即AC+BC=CD.·····················································10分
(3)由(1),得 当m=5时,b2-4ac.
∴ AD=BD=5.
∵∠ACB=∠ADB=90°,
∴AB=10. 11分
∴AC2+BC2=102=100. ①··········································11分
由(2)得,AC+BC=CD=7=14. ②···································12分
由① ②解得AC=6,BC=8或AC=8,BC=6.·······························14分
相关试卷
这是一份苏科版数学九年级上册月考复习试卷06(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份苏科版数学九年级上册月考模拟试卷06(含答案),共40页。试卷主要包含了已知二次函数y=x2+等内容,欢迎下载使用。
这是一份苏科版数学九年级上册期中模拟试卷二(含答案),共8页。试卷主要包含了一元二次方程x,抛物线y=﹣2,若A等内容,欢迎下载使用。