2021年福建省福州市鼓楼区中考数学适应性试卷 解析版
展开2021年福建省福州市鼓楼区中考数学适应性试卷
一、认真选一选(每题只有一个正确选项,本题共10小题,每题4分,共40分)
1.(4分)﹣2的倒数是( )
A.2 B. C.﹣ D.﹣2
2.(4分)过去的五年,我国经济社会发展取得新的历史性成就,脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.将5575万用科学记数法可表示为( )
A.5575×104 B.0.5575×108 C.5.575×107 D.5.575×108
3.(4分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3
4.(4分)若a≠b,则下列分式化简正确的是( )
A.= B.= C.= D.=
5.(4分)用配方法解方程x2﹣6x﹣1=0时,配方结果正确的是( )
A.(x﹣3)2=10 B.(x﹣3)2=8 C.(x﹣6)2=10 D.(x﹣3)2=1
6.(4分)如图,如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(5,0),sin∠COA=.若反比例函数y=(k>0,x>0)经过点C,则k的值等于( )
A.5 B.12 C.24 D.25
7.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠COD=80°,则∠A的度数为( )
A.20° B.40° C.60° D.80°
8.(4分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:
小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是
( )
A.嘉淇推理严谨,不必补充
B.应补充:且AB=CD
C.应补充:且AB∥CD
D.应补充:且OA=OC
9.(4分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,
甲:若b=5,则点P的个数为0;
乙:若b=4,则点P的个数为1;
丙:若b=3,则点P的个数为1.
下列判断正确的是( )
A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对
10.(4分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是( )
A.(9,2) B.(9,3) C.(10,2) D.(10,3)
二、细心填一填(本大题共6小题,每小题4分,满分24分)
11.(4分)方程组的解为 .
12.(4分)已知抛物线y=x2+1关于x轴对称的抛物线解析式是 .
13.(4分)正六边形的一个内角是正n边形一个外角的6倍,则n= .
14.(4分)小亮想要计算一组数据82,80,83,76,89,79的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去80,得到一组新数据2,0,3,﹣4,9,﹣1,记这组新数据的方差为s12,则s12 s02(填“>”,“=”或“<”).
15.(4分)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为 .
16.(4分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为 .
二、专心解一解(本大题共9小题,满分86分,)
17.(8分)计算:()﹣1++|﹣2|﹣6sin45°.
18.(8分)先化简,再求值:÷(1﹣),其中,x=﹣3.
19.(8分)每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:
(1)该校八年级共有 名学生,“优秀”所占圆心角的度数为 .
(2)请将图1中的条形统计图补充完整.
(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?
(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.
20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.
根据以上规定,回答问题:
(1)下列图形是旋转对称图形,但不是中心对称图形的是 ;
A.矩形
B.正五边形
C.菱形
D.正六边形
(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有: (填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.
其中真命题的个数有 个;
A.0
B.1
C.2
D.3
(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.
21.(8分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.
x
…
﹣4
﹣3
﹣2
﹣1
0
1
2
3
4
…
y
…
﹣
a
﹣2
﹣4
b
﹣4
﹣2
﹣
﹣
…
(1)列表,写出表中a,b的值:a= ,b= ;
描点、连线,在所给的平面直角坐标系中画出该函数的图象.
(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):
①函数y=﹣的图象关于y轴对称;
②当x=0时,函数y=﹣有最小值,最小值为﹣6;
③在自变量的取值范围内函数y的值随自变量x的增大而减小.
(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.
22.(8分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.
(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?
(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;
(3)机器人公司的报价如下表:
型号
原价
购买数量少于30台
购买数量不少于30台
A型
20万元/台
原价购买
打九折
B型
12万元/台
原价购买
打八折
在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.
23.(12分)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比≈0.618.如图,圆内接正五边形ABCDE,圆心为O,OA与BE交于点H,AC、AD与BE分别交于点M、N.根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)
(1)求证:△ABM是等腰三角形且底角等于36°,并直接说出△BAN的形状;
(2)求证:,且其比值k=;
(3)由对称性知AO⊥BE,由(1)(2)可知也是一个黄金分割数,据此求sin18°的值.
24.(12分)如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿AMF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).
解答下列问题:
(1)当t为何值时,△CMQ是等腰三角形?
(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;
(3)点P在运动过程中,当点P在∠AFE的平分线上时,求AP的长度.
25.(14分)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).
(1)求二次函数的解析式.
(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.
(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.
2021年福建省福州市鼓楼区中考数学适应性试卷
参考答案与试题解析
一、认真选一选(每题只有一个正确选项,本题共10小题,每题4分,共40分)
1.(4分)﹣2的倒数是( )
A.2 B. C.﹣ D.﹣2
【分析】根据倒数定义可知,﹣2的倒数是﹣.
【解答】解:﹣2的倒数是﹣.
故选:C.
2.(4分)过去的五年,我国经济社会发展取得新的历史性成就,脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.将5575万用科学记数法可表示为( )
A.5575×104 B.0.5575×108 C.5.575×107 D.5.575×108
【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.
【解答】解:5575万=55750000=5.575×107.
故选:C.
3.(4分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3
【分析】直接利用关于y轴对称点的性质得出答案.
【解答】解:∵点A(m,2)与点B(3,n)关于y轴对称,
∴m=﹣3,n=2.
故选:B.
4.(4分)若a≠b,则下列分式化简正确的是( )
A.= B.= C.= D.=
【分析】根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.
【解答】解:∵a≠b,
∴,故选项A错误;
,故选项B错误;
,故选项C错误;
,故选项D正确;
故选:D.
5.(4分)用配方法解方程x2﹣6x﹣1=0时,配方结果正确的是( )
A.(x﹣3)2=10 B.(x﹣3)2=8 C.(x﹣6)2=10 D.(x﹣3)2=1
【分析】先把常数项移到方程右边,再把方程两边加上9,然后把方程左边写成完全平方形式即可.
【解答】解:∵x2﹣6x﹣1=0,
∴x2﹣6x=1,
∴x2﹣6x+9=10,
∴(x﹣3)2=10.
故选:A.
6.(4分)如图,如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(5,0),sin∠COA=.若反比例函数y=(k>0,x>0)经过点C,则k的值等于( )
A.5 B.12 C.24 D.25
【分析】作CD⊥OA于D,如图,利用菱形的性质得OC=OA=5,在Rt△OCD中利用正弦的定义计算出CD=4,则可根据勾股定理计算出OD=3,从而得到C(3,4),然后根据反比例函数图象上点的坐标特征确定k的值.
【解答】解:如图,作CD⊥OA于D,
∵点A (5,0),
∴OA=5,
∵四边形OABC为菱形,
∴OC=OA=5,
在Rt△OCD中,sin∠COD==.
∴CD=4,
∴OD==3,
∴C(3,4),
把C(3,4)代入y=得k=3×4=12.
故选:B.
7.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠COD=80°,则∠A的度数为( )
A.20° B.40° C.60° D.80°
【分析】利用垂径定理证明=,推出∠DOB=∠BOC=12∠DOC=40°,
【解答】解:∵AB是直径,AB⊥CD,
∴=,
∴∠DOB=∠BOC=∠DOC=40°,
∴∠A=∠BOC=20°,
故选:A.
8.(4分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:
小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是
( )
A.嘉淇推理严谨,不必补充
B.应补充:且AB=CD
C.应补充:且AB∥CD
D.应补充:且OA=OC
【分析】根据两组对边分别相等的四边形是平行四边形判定即可.
【解答】解:∵CB=AD,AB=CD,
∴四边形ABCD是平行四边形,
故应补充“AB=CD”,
故选:B.
9.(4分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,
甲:若b=5,则点P的个数为0;
乙:若b=4,则点P的个数为1;
丙:若b=3,则点P的个数为1.
下列判断正确的是( )
A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对
【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.
【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,
∴抛物线的顶点坐标为(2,4),
∴在抛物线上的点P的纵坐标最大为4,
∴甲、乙的说法正确;
若b=3,则抛物线上纵坐标为3的点有2个,
∴丙的说法不正确;
故选:C.
10.(4分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是( )
A.(9,2) B.(9,3) C.(10,2) D.(10,3)
【分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.
【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,
则PE⊥y轴,PF⊥x轴,
∵∠EOF=90°,
∴四边形PEOF是矩形,
∵PE=PF,PE∥OF,
∴四边形PEOF为正方形,
∴OE=PF=PE=OF=5,
∵A(0,8),
∴OA=8,
∴AE=8﹣5=3,
∵四边形OACB为矩形,
∴BC=OA=8,BC∥OA,AC∥OB,
∴EG∥AC,
∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,
∴CG=AE=3,EG=OB,
∵PE⊥AO,AO∥CB,
∴PG⊥CD,
∴CD=2CG=6,
∴DB=BC﹣CD=8﹣6=2,
∵PD=5,DG=CG=3,
∴PG=4,
∴OB=EG=5+4=9,
∴D(9,2).
故选:A.
二、细心填一填(本大题共6小题,每小题4分,满分24分)
11.(4分)方程组的解为 .
【分析】方程组利用加减消元法求出解即可.
【解答】解:,
①+②得:4x=8,
解得:x=2,
把x=2代入①得:y=1,
则方程组的解为.
故答案为:.
12.(4分)已知抛物线y=x2+1关于x轴对称的抛物线解析式是 y=﹣x2﹣1 .
【分析】首先确定翻折后的顶点坐标,然后根据沿x轴翻折,则开口方向改变,即二次项系数变成相反数,即可直接写出函数解析式.
【解答】解:抛物线y=x2+1的顶点坐标是(0,1),所以新抛物线的顶点坐标是(0,﹣1),则函数的解析式是y=﹣x2﹣1.
故答案是:y=﹣x2﹣1.
13.(4分)正六边形的一个内角是正n边形一个外角的6倍,则n= 18 .
【分析】由正六边形的一个内角为180°﹣=120°,得正n边形一个外角为120°÷6=20°.根据正多边形的性质以及任意多边形的外角和等于360°,得n=360°÷20°=18.
【解答】解:∵正六边形的一个内角为180°﹣=120°,
∴正n边形一个外角为120°÷6=20°.
∴n=360°÷20°=18.
故答案为:18.
14.(4分)小亮想要计算一组数据82,80,83,76,89,79的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去80,得到一组新数据2,0,3,﹣4,9,﹣1,记这组新数据的方差为s12,则s12 = s02(填“>”,“=”或“<”).
【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,
∴S12=S02.
故答案为:=.
15.(4分)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为 0 .
【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.
【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,
∴k1=ab;
又∵点A与点B关于x轴的对称,
∴B(a,﹣b)
∵点B在双曲线y=上,
∴k2=﹣ab;
∴k1+k2=ab+(﹣ab)=0;
故答案为:0.
16.(4分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为 1 .
【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.
方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,PC的中点,根据相似三角形的判定和性质定理即可得到结论.
【解答】解:方法一:连接CH并延长交AD于P,连接PE,
∵四边形ABCD是正方形,
∴∠A=90°,AD∥BC,AB=AD=BC=2,
∵E,F分别是边AB,BC的中点,
∴AE=CF=×2=,
∵AD∥BC,
∴∠DPH=∠FCH,
∵∠DHP=∠FHC,
∵DH=FH,
∴△PDH≌△CFH(AAS),
∴PD=CF=,
∴AP=AD﹣PD=,
∴PE===2,
∵点G,H分别是EC,CP的中点,
∴GH=EP=1;
方法二:设DF,CE交于O,
∵四边形ABCD是正方形,
∴∠B=∠DCF=90°,BC=CD=AB,
∵点E,F分别是边AB,BC的中点,
∴BE=CF,
∴△CBE≌△DCF(SAS),
∴CE=DF,∠BCE=∠CDF,
∵∠CDF+∠CFD=90°,
∴∠BCE+∠CFD=90°,
∴∠COF=90°,
∴DF⊥CE,
∴CE=DF==,
∵点G,H分别是EC,PC的中点,
∴CG=FH=,
∵∠DCF=90°,CO⊥DF,
∴∠DCO+∠FCO=∠DCO+∠CDO=90°,
∴∠FCO=∠CDO,
∵∠DCF=∠COF=90°,
∴△COF∽△DOC,
∴=,
∴CF2=OF•DF,
∴OF===,
∴OH=,OD=,
∵∠COF=∠COD=90°,
∴△COF∽△DCF,
∴,
∴OC2=OF•OD,
∴OC==,
∴OG=CG﹣OC=﹣=,
∴HG===1,
故答案为:1.
二、专心解一解(本大题共9小题,满分86分,)
17.(8分)计算:()﹣1++|﹣2|﹣6sin45°.
【分析】直接利用负整数指数幂的性质以及二次根式的性质和特殊角的三角函数值分别化简得出答案.
【解答】解:原式=3+3+2﹣6×
=3+3+2﹣3
=5.
18.(8分)先化简,再求值:÷(1﹣),其中,x=﹣3.
【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【解答】解:原式=÷(﹣)
=÷
=•
=,
当x=﹣3时,
原式===.
19.(8分)每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:
(1)该校八年级共有 500 名学生,“优秀”所占圆心角的度数为 108° .
(2)请将图1中的条形统计图补充完整.
(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?
(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.
【分析】(1)由“良好”的人数和其所占的百分比即可求出总人数;由360°乘以“优秀”所占的比例即可得出“优秀”所占圆心角的度数;
(2)求出“一般”的人数,补全条形统计图即可;
(3)由15000乘以“不合格”所占的比例即可;
(4)画树状图得出所有等可能的情况数,找出必有甲同学参加的情况数,即可求出所求的概率.
【解答】解:(1)该校八年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×=108°;
故答案为:500,108°;
(2)“一般”的人数为500﹣150﹣200﹣50=100(名),补全条形统计图如图1
(3)15000×=1500(名),
即估计该市大约有1500名学生在这次答题中成绩不合格;
(4)画树状图为:
共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,
∴必有甲同学参加的概率为=.
20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.
根据以上规定,回答问题:
(1)下列图形是旋转对称图形,但不是中心对称图形的是 ;
A.矩形
B.正五边形
C.菱形
D.正六边形
(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有: (1)(3)(5) (填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.
其中真命题的个数有 C 个;
A.0
B.1
C.2
D.3
(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.
【分析】(1)根据旋转图形,中心对称图形的定义判断即可.
(2)旋转对称图形,且有一个旋转角是60度判断即可.
(3)根据旋转图形的定义判断即可.
(4)根据要求画出图形即可.
【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,
故选B.
(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).
故答案为(1)(3)(5).
(3)命题中①③正确,
故选C.
(4)图形如图所示:
21.(8分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.
x
…
﹣4
﹣3
﹣2
﹣1
0
1
2
3
4
…
y
…
﹣
a
﹣2
﹣4
b
﹣4
﹣2
﹣
﹣
…
(1)列表,写出表中a,b的值:a= ﹣ ,b= ﹣6 ;
描点、连线,在所给的平面直角坐标系中画出该函数的图象.
(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):
①函数y=﹣的图象关于y轴对称;
②当x=0时,函数y=﹣有最小值,最小值为﹣6;
③在自变量的取值范围内函数y的值随自变量x的增大而减小.
(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.
【分析】(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图象;
(2)结合图象可从函数的增减性及对称性进行判断;
(3)根据图象求得即可.
【解答】解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,
画出函数的图象如图:
故答案为:﹣,﹣6;
(2)根据函数图象:
①函数y=﹣的图象关于y轴对称,说法正确;
②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;
③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.
(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<x<1.
22.(8分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.
(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?
(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;
(3)机器人公司的报价如下表:
型号
原价
购买数量少于30台
购买数量不少于30台
A型
20万元/台
原价购买
打九折
B型
12万元/台
原价购买
打八折
在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.
【分析】(1)设1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,根据题意列出方程组即可求出答案.
(2)根据题意列出方程即可求出答案.
(3)根据a的取值,求出w与a的函数关系,从而求出w的最小值.
【解答】解:(1)设1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,
由题意可知:,
解得:,
答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.
(2)由题意可知:0.4a+0.2b=20,
∴b=100﹣2a(10≤a≤45).
(3)当10≤a<30时,
此时40<b≤80,
∴w=20×a+0.8×12(100﹣2a)=0.8a+960,
当a=10时,此时w有最小值,w=968,
当30≤a≤35时,
此时30≤b≤40,
∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960,
当a=35时,此时w有最小值,w=918,
当35<a≤45时,
此时10≤b<30,
∴w=0.9×20a+12(100﹣2a)=﹣6a+1200
当a=45时,
w有最小值,此时w=930,
答:选购A型号机器人35台时,总费用w最少,此时需要918万元.
23.(12分)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比≈0.618.如图,圆内接正五边形ABCDE,圆心为O,OA与BE交于点H,AC、AD与BE分别交于点M、N.根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)
(1)求证:△ABM是等腰三角形且底角等于36°,并直接说出△BAN的形状;
(2)求证:,且其比值k=;
(3)由对称性知AO⊥BE,由(1)(2)可知也是一个黄金分割数,据此求sin18°的值.
【分析】(1)连接圆心O与正五边形各顶点,利用圆周角定理得出∠ABE=∠BAC=36°,即AM=BM,再求出∠BNA=72°=∠BAD,得出结论;
(2)证明△BAM∽△BEA,得到设BM=y,AB=x,则AM=AN=y,AB=AE=BN=x,证明,得到,设=t,求出t值即可;
(3)根据题意求出∠MAH=∠NAH=∠MAN=18°,再根据sin∠MAH=,将代入,即可求值.
【解答】解:(1)连接圆心O与正五边形各顶点,
在正五边形中,
∠AOE=360°÷5=72°,
∴∠ABE=∠AOE=36°,
同理∠BAC=×72°=36°,
∴AM=BM,
∴△ABM是等腰三角形且底角等于36°,
∵∠BOD=∠BOC+∠COD=72°+72°=144°,
∴∠BAD=∠BOD=72°,
∴∠BNA=180°﹣∠BAD﹣∠ABE=72°,
∴AB=NB,即△ABN为等腰三角形;
(2)∵∠ABM=∠ABE,∠AEB=∠AOB=36°=∠BAM,
∴△BAM∽△BEA,
∴,而AB=BN,
∴,
设BM=y,AB=x,则AM=AN=y,AB=AE=BN=x,
∵∠AMN=∠MAB+∠MBA=72°=∠BAN,∠ANM=∠ANB,
∴△AMN∽△BAN,
∴,即,则y2=x2﹣xy,
两边同时除以x2,得:,设=t,
则t2+t﹣1=0,解得:t=或(舍),
∴=;
(3)∵∠MAN=36°,根据对称性可知:∠MAH=∠NAH=∠MAN=18°,
而AO⊥BE,
∴sin18°=sin∠MAH=
=
=.
24.(12分)如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿AMF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).
解答下列问题:
(1)当t为何值时,△CMQ是等腰三角形?
(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;
(3)点P在运动过程中,当点P在∠AFE的平分线上时,求AP的长度.
【分析】(1)首先由△ECM∽△EBF,求出CM的长,再根据CM=MQ,即可得出t的值;
(2)根据sin∠PAH=sin∠CAB得PH=,同理可求QN=6﹣,由四边形PQNH是矩形,则PH=NQ,即可得出方程解决问题;
(3)延长AC交EF于点K,由△ABC≌△EBF,可证∠EKC=90°,根据面积法求出CK==,再根据角平分线的性质得PH=PK,即可解决问题.
【解答】解:(1)∵AB∥CD,
∴△ECM∽△EBF,
∴,
∴,
∴CM=,
∵∠CMQ>90°,
当△CMQ是等腰三角形时,
只有CM=MQ,
∴1×t=,
∴t=,
即当t=时,△CMQ是等腰三角形;
(2)如图,过点Q作QN⊥AF于点N,
∵∠ABC=∠EBF=90°,AB=BR=8cm,BC=BF=6cm,
∴AC==10cm,EF==10cm,
∵CE=2cm,CM=cm,
∴EM==,
∵sin∠PAH=sin∠CAB,
∴,
∴,
∴PH=,
同理可求QN=6﹣,
∵四边形PQNH是矩形,
∴PH=NQ,
∴6﹣=,
∴t=3,
即当t=3时,四边形PQNH为矩形;
(3)如图,连接PF,延长AC交EF于点K,
∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,
∴△ABC≌△EBF(SSS),
∴∠E=∠CAB,
又∵∠ACB=∠ECK,
∴∠ABC=∠EKC=90°,
∵S△CEM=,
∴CK==,
∵PF平分∠AFE,PH⊥AF,PK⊥EF,
∴PH=PK,
∴,
∴t=,
则AP=2t=7cm.
25.(14分)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).
(1)求二次函数的解析式.
(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.
(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.
【分析】(1)设二次函数的解析式为y=a(x+2)(x﹣4),将点C坐标代入可求解;
(2)利用中点坐标公式可求P(﹣1,2),点Q(2,2),由勾股定理可求BC的长,由待定系数法可求PB解析式,设点M(c,﹣c+),由两点距离公式可得(c﹣2)2+(﹣c+﹣2)2=8,可求c=4或﹣,即可求解;
(3)过点D作DE⊥BC于点E,设直线DK与BC交于点N,先求出DE=BE==,由锐角三角函数可求NE==,分DK与射线EC交于点N(m,4﹣m)和DK与射线EB交于N(m,4﹣m)两种情况讨论,求出直线DK解析式,联立方程组可求点K坐标.
【解答】解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),
∴设二次函数的解析式为y=a(x+2)(x﹣4),
∵二次函数图象过点C(0,4),
∴4=a(0+2)(0﹣4),
∴a=﹣,
∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;
(2)存在,
理由如下:如图1,取BC中点Q,连接MQ,
∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,
∴P(﹣1,2),点Q(2,2),BC==4,
设直线BP解析式为:y=kx+b,
由题意可得:,
解得:
∴直线BP的解析式为:y=﹣x+,
∵∠BMC=90°
∴点M在以BC为直径的圆上,
∴设点M(c,﹣c+),
∵点Q是Rt△BCM的中点,
∴MQ=BC=2,
∴MQ2=8,
∴(c﹣2)2+(﹣c+﹣2)2=8,
∴c=4或﹣,
当c=4时,点B,点M重合,即c=4,不合题意舍去,
∴c=﹣,则点M坐标(﹣,),
故线段PB上存在点M(﹣,),使得∠BMC=90°;
(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,
∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,
∴点D(1,0),OB=OC=4,AB=6,BD=3,
∴∠OBC=45°,
∵DE⊥BC,
∴∠EDB=∠EBD=45°,
∴DE=BE==,
∵点B(4,0),C(0,4),
∴直线BC解析式为:y=﹣x+4,
设点E(n,﹣n+4),
∴﹣n+4=,
∴n=,
∴点E(,),
在Rt△DNE中,NE===,
①若DK与射线EC交于点N(m,4﹣m),
∵NE=BN﹣BE,
∴=(4﹣m)﹣,
∴m=,
∴点N(,),
∴直线DK解析式为:y=4x﹣4,
联立方程组可得:,
解得:或,
∴点K坐标为(2,4)或(﹣8,﹣36);
②若DK与射线EB交于N(m,4﹣m),
∵NE=BE﹣BN,
∴=﹣(4﹣m),
∴m=,
∴点N(,),
∴直线DK解析式为:y=x﹣,
联立方程组可得:,
解得:或,
∴点K坐标为(,)或(,),
综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).
2023年福建省福州市鼓楼区延安中学中考数学适应性试卷(三)(含解析): 这是一份2023年福建省福州市鼓楼区延安中学中考数学适应性试卷(三)(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年福建省福州市鼓楼区杨桥中学中考数学适应性试卷(含解析): 这是一份2023年福建省福州市鼓楼区杨桥中学中考数学适应性试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年福建省福州市鼓楼区屏东中学中考数学适应性试卷(3月份)(含解析): 这是一份2023年福建省福州市鼓楼区屏东中学中考数学适应性试卷(3月份)(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。