终身会员
搜索
    上传资料 赚现金

    2019年湖北省孝感市中考数学试卷+答案+解析

    立即下载
    加入资料篮
    2019年湖北省孝感市中考数学试卷+答案+解析第1页
    2019年湖北省孝感市中考数学试卷+答案+解析第2页
    2019年湖北省孝感市中考数学试卷+答案+解析第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019年湖北省孝感市中考数学试卷+答案+解析

    展开

    这是一份2019年湖北省孝感市中考数学试卷+答案+解析,共26页。试卷主要包含了精心选一选,相信自己的判断!,用心做一做,显显自己的能力!等内容,欢迎下载使用。
    1.(3分)(2019•孝感)计算﹣19+20等于( )
    A.﹣39B.﹣1C.1D.39
    2.(3分)(2019•孝感)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为( )
    A.10°B.20°C.30°D.40°
    3.(3分)(2019•孝感)下列立体图形中,左视图是圆的是( )
    A.B.
    C.D.
    4.(3分)(2019•孝感)下列说法错误的是( )
    A.在一定条件下,可能发生也可能不发生的事件称为随机事件
    B.一组数据中出现次数最多的数据称为这组数据的众数
    C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大
    D.全面调查和抽样调查是收集数据的两种方式
    5.(3分)(2019•孝感)下列计算正确的是( )
    A.x7÷x5=x2B.(xy2)2=xy4
    C.x2•x5=x10D.(+)(﹣)=b﹣a
    6.(3分)(2019•孝感)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是( )
    A.F=B.F=C.F=D.F=
    7.(3分)(2019•孝感)已知二元一次方程组,则的值是( )
    A.﹣5B.5C.﹣6D.6
    8.(3分)(2019•孝感)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为( )
    A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)
    9.(3分)(2019•孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是( )
    A.B.
    C.D.
    10.(3分)(2019•孝感)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为( )
    A.B.C.D.
    二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)
    11.(3分)(2019•孝感)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 .
    12.(3分)(2019•孝感)方程=的解为 .
    13.(3分)(2019•孝感)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC= 米.
    14.(3分)(2019•孝感)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是 .
    15.(3分)(2019•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1= .
    16.(3分)(2019•孝感)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为 .
    三、用心做一做,显显自己的能力!(本大题8小题,满分72分)
    17.(6分)(2019•孝感)计算:|﹣1|﹣2sin60°+()﹣1+.
    18.(8分)(2019•孝感)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.
    19.(7分)(2019•孝感)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.
    (1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是 .
    (2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.
    20.(8分)(2019•孝感)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:
    ①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;
    ②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.
    请你观察图形,根据操作结果解答下列问题;
    (1)线段CD与CE的大小关系是 ;
    (2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.
    21.(10分)(2019•孝感)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.
    (1)若a为正整数,求a的值;
    (2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.
    22.(10分)(2019•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.
    (1)求今年每套A型、B型一体机的价格各是多少万元?
    (2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
    23.(10分)(2019•孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.
    (1)求证:DG∥CA;
    (2)求证:AD=ID;
    (3)若DE=4,BE=5,求BI的长.
    24.(13分)(2019•孝感)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).
    (1)点A的坐标为 ,点B的坐标为 ,线段AC的长为 ,抛物线的解析式为 .
    (2)点P是线段BC下方抛物线上的一个动点.
    ①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.
    ②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.
    2019年湖北省孝感市中考数学试卷
    参考答案与试题解析
    一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)
    1.(3分)(2019•孝感)计算﹣19+20等于( )
    A.﹣39B.﹣1C.1D.39
    【考点】有理数的加法.
    【分析】直接利用有理数的加减运算法则计算得出答案.
    【解答】解:﹣19+20=1.
    故选:C.
    2.(3分)(2019•孝感)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为( )
    A.10°B.20°C.30°D.40°
    【考点】垂线;平行线的性质.
    【分析】根据平行线的性质和垂直的定义解答即可.
    【解答】解:∵l1∥l2,
    ∴∠1=∠CAB=70°,
    ∵BC⊥l3交l1于点B,
    ∴∠ACB=90°,
    ∴∠2=180°﹣90°﹣70°=20°,
    故选:B.
    3.(3分)(2019•孝感)下列立体图形中,左视图是圆的是( )
    A.B.
    C.D.
    【考点】简单几何体的三视图.
    【分析】左视图是从物体左面看,所得到的图形.
    【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;
    B、圆柱的左视图是矩形,故此选项不合题意;
    C、三棱柱的左视图是矩形,故此选项不合题意;
    D、球的左视图是圆形,故此选项符合题意;
    故选:D.
    4.(3分)(2019•孝感)下列说法错误的是( )
    A.在一定条件下,可能发生也可能不发生的事件称为随机事件
    B.一组数据中出现次数最多的数据称为这组数据的众数
    C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大
    D.全面调查和抽样调查是收集数据的两种方式
    【考点】命题与定理;全面调查与抽样调查;众数;方差;随机事件.
    【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.
    【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;
    B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;
    C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;
    D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.
    故选:C.
    5.(3分)(2019•孝感)下列计算正确的是( )
    A.x7÷x5=x2B.(xy2)2=xy4
    C.x2•x5=x10D.(+)(﹣)=b﹣a
    【考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;二次根式的混合运算.
    【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.
    【解答】解:A、x7÷x5=x2,故本选项正确;
    B、(xy2)2=x2y4,故本选项错误;
    C、x2•x5=x7,故本选项错误;
    D、(+)(﹣)=a﹣b,故本选项错误;
    故选:A.
    6.(3分)(2019•孝感)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是( )
    A.F=B.F=C.F=D.F=
    【考点】反比例函数的应用.
    【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.
    【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,
    ∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,
    则F=.
    故选:B.
    7.(3分)(2019•孝感)已知二元一次方程组,则的值是( )
    A.﹣5B.5C.﹣6D.6
    【考点】解二元一次方程组.
    【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.
    【解答】解:,
    ②﹣①×2得,2y=7,解得,
    把代入①得,+y=1,解得,
    ∴=.
    故选:C.
    8.(3分)(2019•孝感)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为( )
    A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)
    【考点】坐标与图形变化﹣旋转.
    【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.
    【解答】解:作PQ⊥y轴于Q,如图,
    ∵P(2,3),
    ∴PQ=2,OQ=3,
    ∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,
    ∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,
    ∴点P′的坐标为(3,﹣2).
    故选:D.
    9.(3分)(2019•孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是( )
    A.B.
    C.D.
    【考点】函数的图象.
    【分析】根据实际问题结合四个选项确定正确的答案即可.
    【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;
    ∴此时容器内的水量随时间的增加而增加,
    ∵随后的8min内既进水又出水,容器内存水12L,
    ∴此时水量继续增加,只是增速放缓,
    ∵接着关闭进水管直到容器内的水放完,
    ∴水量逐渐减少为0,
    综上,A选项符合,
    故选:A.
    10.(3分)(2019•孝感)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为( )
    A.B.C.D.
    【考点】全等三角形的判定与性质;LE:正方形的性质.
    【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.
    【解答】解:正方形ABCD中,∵BC=4,
    ∴BC=CD=AD=4,∠BCE=∠CDF=90°,
    ∵AF=DE=1,
    ∴DF=CE=3,
    ∴BE=CF=5,
    在△BCE和△CDF中,

    ∴△BCE≌△CDF(SAS),
    ∴∠CBE=∠DCF,
    ∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,
    cs∠CBE=cs∠ECG=,
    ∴,CG=,
    ∴GF=CF﹣CG=5﹣=,
    故选:A.
    二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)
    11.(3分)(2019•孝感)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 1.25×109 .
    【考点】科学记数法—表示较大的数.
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
    【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.
    故答案为:1.25×109.
    12.(3分)(2019•孝感)方程=的解为 x=1 .
    【考点】解分式方程.
    【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.
    【解答】解:两边同时乘2x(x+3),得
    x+3=4x,
    解得x=1.
    经检验x=1是原分式方程的根.
    13.(3分)(2019•孝感)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC= (20﹣20) 米.
    【考点】解直角三角形的应用﹣仰角俯角问题.
    【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.
    【解答】解:在Rt△PBD中,tan∠BPD=,
    则BD=PD•tan∠BPD=20,
    在Rt△PBD中,∠CPD=45°,
    ∴CD=PD=20,
    ∴BC=BD﹣CD=20﹣20,
    故答案为:(20﹣20).
    14.(3分)(2019•孝感)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是 108° .
    【考点】扇形统计图;条形统计图.
    【分析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.
    【解答】解:∵被调查的总人数为9÷15%=60(人),
    ∴B类别人数为60﹣(9+21+12)=18(人),
    则扇形统计图B部分所对应的圆心角的度数是360°×=108°,
    故答案为:108°.
    15.(3分)(2019•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1= 0.14 .
    【考点】数学常识;正多边形和圆.
    【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.
    【解答】解:∵⊙O的半径为1,
    ∴⊙O的面积S=3.14,
    ∴圆的内接正十二边形的中心角为=30°,
    ∴圆的内接正十二边形的面积S1=12××1×1×sin30°=3,
    ∴则S﹣S1=0.14,
    故答案为:0.14.
    16.(3分)(2019•孝感)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为 .
    【考点】反比例函数的性质;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.
    【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.
    【解答】解:设D(2m,2n),
    ∵OD:OB=2:3,
    ∴A(3m,0),C(0,3n),
    ∴B(3m,3n),
    ∵双曲线y=(x>0)经过矩形OABC的顶点B,
    ∴9=3m•3n,
    ∴mn=1,
    ∵双曲线y=(x>0)经过点D,
    ∴k=4mn
    ∴双曲线y=(x>0),
    ∴E(3m,n),F(m,3n),
    ∴BE=3n﹣n=n,BF=3m﹣m=m,
    ∴S△BEF=BE•BF=mn=
    故答案为.
    三、用心做一做,显显自己的能力!(本大题8小题,满分72分)
    17.(6分)(2019•孝感)计算:|﹣1|﹣2sin60°+()﹣1+.
    【考点】实数的运算;负整数指数幂;特殊角的三角函数值.
    【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.
    【解答】解:原式=﹣1﹣2×+6﹣3=2.
    18.(8分)(2019•孝感)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.
    【考点】全等三角形的判定与性质.
    【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.
    【解答】证明:∵∠C=∠D=90°,
    ∴△ACB和△BDA是直角三角形,
    在Rt△ACB和Rt△BDA中,,
    ∴Rt△ACB≌Rt△BDA(HL),
    ∴∠ABC=∠BAD,
    ∴AE=BE.
    19.(7分)(2019•孝感)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.
    (1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是 .
    (2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.
    【考点】概率公式;列表法与树状图法.
    【分析】(1)直接利用概率公式计算可得;
    (2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.
    【解答】解:(1)在﹣2,﹣1,0,1中正数有1个,
    ∴摸出的球上面标的数字为正数的概率是,
    故答案为:.
    (2)列表如下:
    由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:
    (﹣2,0)、(﹣1,﹣1)、(﹣1,0)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)这8个,
    所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.
    20.(8分)(2019•孝感)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:
    ①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;
    ②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.
    请你观察图形,根据操作结果解答下列问题;
    (1)线段CD与CE的大小关系是 CD=CE ;
    (2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.
    【考点】全等三角形的判定与性质;角平分线的性质;作图—复杂作图;解直角三角形.菁
    【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;
    (2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF=5可得答案.
    【解答】解:(1)CD=CE,
    由作图知CE⊥AB,BD平分∠CBF,
    ∴∠1=∠2=∠3,
    ∵∠CEB+∠3=∠2+∠CDE=90°,
    ∴∠CEB=∠CDE,
    ∴CD=CE,
    故答案为:CD=CE;
    (2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,
    ∴BC=BF,∠CBD=∠FBD,
    在△BCD和△BFD中,
    ∵,
    ∴△BCD≌△BFD(AAS),
    ∴CD=DF,
    设CD=DF=x,
    在Rt△ACB中,AB==13,
    ∴sin∠DAF==,即=,
    解得x=,
    ∵BC=BF=5,
    ∴tan∠DBF==×=.
    21.(10分)(2019•孝感)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.
    (1)若a为正整数,求a的值;
    (2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.
    【考点】根的判别式;根与系数的关系.
    【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;
    (2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.
    【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,
    ∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,
    解得:a<3,
    ∵a为正整数,
    ∴a=1,2;
    (2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,
    ∵x12+x22﹣x1x2=16,
    ∴(x1+x2)2﹣x1x2=16,
    ∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,
    解得:a1=﹣1,a2=6,
    ∵a<3,
    ∴a=﹣1.
    22.(10分)(2019•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.
    (1)求今年每套A型、B型一体机的价格各是多少万元?
    (2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
    【考点】二元一次方程组的应用;一元一次不等式的应用.
    【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;
    (2)根据题意表示出总费用进而利用一次函数增减性得出答案.
    【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,
    由题意可得:,
    解得:,
    答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;
    (2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,
    由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,
    解得:m≤600,
    设明年需投入W万元,
    W=1.2×(1+25%)m+1.8(1100﹣m)
    =﹣0.3m+1980,
    ∵﹣0.3<0,
    ∴W随m的增大而减小,
    ∵m≤600,
    ∴当m=600时,W有最小值﹣0.3×600+1980=1800,
    故该市明年至少需投入1800万元才能完成采购计划.
    23.(10分)(2019•孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.
    (1)求证:DG∥CA;
    (2)求证:AD=ID;
    (3)若DE=4,BE=5,求BI的长.
    【考点】圆周角定理;三角形的外接圆与外心;三角形的内切圆与内心.
    【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF=∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;
    (2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;
    (3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.
    【解答】(1)证明:∵点I是△ABC的内心,
    ∴∠2=∠7,
    ∵DG平分∠ADF,
    ∴∠1=∠ADF,
    ∵∠ADF=∠ABC,
    ∴∠1=∠2,
    ∵∠3=∠2,
    ∴∠1=∠3,
    ∴DG∥AC;
    (2)证明:∵点I是△ABC的内心,
    ∴∠5=∠6,
    ∵∠4=∠7+∠5=∠3+∠6,
    即∠4=∠DAI,
    ∴DA=DI;
    (3)解:∵∠3=∠7,∠ADE=∠BAD,
    ∴△DAE∽△DBA,
    ∴AD:DB=DE:DA,即AD:9=4:AD,
    ∴AD=6,
    ∴DI=6,
    ∴BI=BD﹣DI=9﹣6=3.
    24.(13分)(2019•孝感)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).
    (1)点A的坐标为 (﹣2,0) ,点B的坐标为 (4,0) ,线段AC的长为 2 ,抛物线的解析式为 y=x2﹣x﹣4 .
    (2)点P是线段BC下方抛物线上的一个动点.
    ①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.
    ②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.
    【考点】二次函数综合题.
    【分析】(1)由题意得:﹣8a=﹣4,故a=,即可求解;
    (2)分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可.
    (3)证明△EPH∽△CAO,∴,即:,则EP=PH,即可求解.
    【解答】解:(1)由题意得:﹣8a=﹣4,故a=,
    故抛物线的表达式为:y=x2﹣x﹣4,
    令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),
    则AC=2,
    故答案为:(﹣2,0)、(4,0)、2、y=x2﹣x﹣4;
    (2)①当BC是平行四边形的一条边时,
    如图所示,点C向右平移4个单位、向上平移4个单位得到点B,
    设:点P(n,n2﹣n﹣4),点Q(m,0),
    则点P向右平移4个单位、向上平移4个单位得到点Q,
    即:n+4=m,n2﹣n﹣4+4=0,
    解得:m=4或6(舍去4),
    即点Q(6,0);
    ②当BC是平行四边形的对角线时,
    设点P(m,n)、点Q(s,0),其中n=m2﹣m﹣4,
    由中心公式可得:m+s=﹣2,n+0=4,
    解得:s=2或4(舍去4),
    故点Q(2,0);
    故点Q的坐标为(2,0)或(6,0);
    (3)如图2,过点P作PH∥x轴交BC于点H,
    ∵GP∥y轴,∴∠HEP=∠ACB,
    ∵PH∥x轴,∴∠PHO=∠AOC,
    ∴△EPH∽△CAO,∴,即:,
    则EP=PH,
    设点P(t,yP),点H(xH,yP),
    则t2﹣t﹣4=xH﹣4,
    则xH=t2﹣t,
    f=PH=[t﹣(t2﹣t)]=﹣(t2﹣4t),
    当t=m时,f1=(m2﹣4m),
    当t=4﹣m时,f2=﹣(m2﹣2m),
    则f1﹣f2=﹣m(m﹣),
    则0<m<2,∴f1﹣f2>0,
    f1>f2.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
    日期:2019/7/10 9:58:47;用户:数学;邮箱:85886818-2@xyh.cm;学号:27755521﹣2
    ﹣1
    0
    1
    ﹣2
    (﹣2,﹣2)
    (﹣1,﹣2)
    (0,﹣2)
    (1,﹣2)
    ﹣1
    (﹣2,﹣1)
    (﹣1,﹣1)
    (0,﹣1)
    (1,﹣1)
    0
    (﹣2,0)
    (﹣1,0)
    (0,0)
    (1,0)
    1
    (﹣2,1)
    (﹣1,1)
    (0,1)
    (1,1)

    相关试卷

    2019年湖北省孝感市中考数学试卷与答案:

    这是一份2019年湖北省孝感市中考数学试卷与答案,共17页。试卷主要包含了精心选一选,相信自己的判断!,用心做一做,显显自己的能力!等内容,欢迎下载使用。

    2019年湖北省孝感市中考数学试卷及答案:

    这是一份2019年湖北省孝感市中考数学试卷及答案,共9页。试卷主要包含了精心选一选,相信自己的判断!,用心做一做,显显自己的能力!等内容,欢迎下载使用。

    2022年湖北省孝感市中考数学试卷(解析版):

    这是一份2022年湖北省孝感市中考数学试卷(解析版),共25页。试卷主要包含了精心选一选,细心填一填,专心解一解等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map