第03讲 基本不等式(原卷版)
展开第3讲 基本不等式
[A级 基础练]
1.(2020春•南关区校级期中)若,则的最小值为
A. B. C.1 D.
2.若x>0,y>0,则“x+2y=2”的一个充分不必要条件是( )
A.x=y B.x=2y
C.x=2且y=1 D.x=y或y=1
3.若实数a,b满足+=,则ab的最小值为( )
A. B.2
C.2 D.4
4.(多选)(2021·山东临沂蒙阴实验中学期末)给出下面四个推断,其中正确的为( )
A.若a,b∈(0,+∞),则+≥2
B.若x,y∈(0,+∞),则lg x+lg y≥2
C.若a∈R,a≠0,则+a≥4
D.若x,y∈R,xy<0,则+≤-2
5.(多选)(2020·新高考卷Ⅰ)已知a>0,b>0,且a+b=1,则( )
A.a2+b2≥ B.2a-b>
C.log2a+log2b≥-2 D.+≤
6.(2021·郑州市第一次质量预测)已知a>0,b>0,2a+b=4,则的最小值为________.
7.函数y=(x>1)的最小值为________.
8.若a>0,b>0,且a+2b-4=0,则ab的最大值为__________,+的最小值为________.
9.(2020春•克东县期中)已知.
(1)求的最大值;
(2)求的最小值.
10.已知x>0,y>0,且2x+8y-xy=0,求
(1)xy的最小值;
(2)x+y的最小值.
[B级 综合练]
11.(2021•山东校级期末)已知正数,满足,且,则的最大值为
A. B. C.2 D.4
12.已知点A(1,2)在直线ax+by-1=0(a>0,b>0)上,若存在满足该条件的a,b,使得不等式+≤m2+8m成立,则实数m的取值范围是( )
A.(-∞,-1]∪[9,+∞) B.(-∞,-9]∪[1,+∞)
C.[-1,9] D.[-9,1]
13.设a,b为正实数,且+=2.
(1)求a2+b2的最小值;
(2)若(a-b)2≥4(ab)3,求ab的值.
14.某厂家拟定在2020年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足x=3-(k为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2020年该产品的利润y万元表示为年促销费用m万元的函数;
(2)该厂家2020年的促销费用投入多少万元时,厂家获取利润最大,最大利润是多少?
[C级 创新练]
15.已知P是面积为1的△ABC内的一点(不含边界),若△PAB,△PAC和△PBC的面积分别为x,y,z,则+的最小值是( )
A. B.
C. D.3
16.《几何原本》中的几何代数法(用几何方法研究代数问题)成了后世西方数学家处理问题的重要依据.根据这一方法,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.如图所示,AB是半圆O的直径,点C是AB上一点(不同于A,B,O),点D在半圆O上,且CD⊥AB,CE⊥OD于点E.设|AC|=a,|BC|=b,则该图形可以完成的“无字证明”为( )
A.≤(a>0,b>0)
B.<(a>0,b>0,a≠b)
C.≤(a>0,b>0)
D.<<(a>0,b>0,a≠b)
新教材新高考2024年高考数学高频考点精讲精练 第03讲 基本不等式 (高频精讲)(原卷版+解析版): 这是一份新教材新高考2024年高考数学高频考点精讲精练 第03讲 基本不等式 (高频精讲)(原卷版+解析版),共52页。试卷主要包含了基本不等式,两个重要的不等式,利用基本不等式求最值,常用技巧等内容,欢迎下载使用。
2024年高考数学一轮复习高频考点精讲精练(新教材新高考) 第03讲 基本不等式 (高频精讲)(原卷版+解析版): 这是一份2024年高考数学一轮复习高频考点精讲精练(新教材新高考) 第03讲 基本不等式 (高频精讲)(原卷版+解析版),共52页。试卷主要包含了基本不等式,两个重要的不等式,利用基本不等式求最值,常用技巧等内容,欢迎下载使用。
2024年高考数学一轮复习高频考点精讲精练(新教材新高考) 第03讲 基本不等式 (分层精练)(原卷版+解析版): 这是一份2024年高考数学一轮复习高频考点精讲精练(新教材新高考) 第03讲 基本不等式 (分层精练)(原卷版+解析版),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。