所属成套资源:2022年中考数学总复习 讲解(含答案)
2022年中考数学总复习第31讲《数据的分析及其应用》讲解(含答案) 学案
展开
这是一份2022年中考数学总复习第31讲《数据的分析及其应用》讲解(含答案) 学案,共13页。学案主要包含了解后感悟,实际探究题,方法与对策,考点概要,考题体验,知识引擎,例题精析,变式拓展等内容,欢迎下载使用。
第31讲 数据的分析及其应用
1.数据的代表
考试内容
考试
要求
平均数
算术平均数
一组数据x1,x2,…,xn,它的平均数x=_________________.
b
c
加权平均数
若n个数x1,x2,…,xn的权分别是f1,f2,…,fn,则其加权平均数x=____________________.
中位数
将一组数据按照由小到大(或由大到小)的顺序排列,若数据的个数为奇数,则处于 的数就是这组数据的中位数;若数据的个数为偶数,则中间两个数据的 就是这组数据的中位数.
确定中位数时,一定要注意先把整组数据按照大小顺序排列,再确定.
众数
在一组数据中,出现 的数据就是这组数据的众数.
(1)一组数据中众数不一定只有一个;(2)当一组数据中出现异常值时,其平均数往往不能正确反映这组数据的集中趋势,就应考虑用中位数或众数来考察.
2.数据的波动
考试内容
考试
要求
表示数据
波动的量
定义
意义
b
c
方差
设有n个数据x1,x2,x3,…,xn,各数据与它们____________________的差的平方分别是(x1-x)2,(x2-x)2,…,(xn-x)2,我们用它们的平均数,即用____________________来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作S2.
方差越大,数据的波动越 ,反之也成立.
标准差
我们也用方差的算术平方根来描述一组数据的离散程度,并把它叫做这组数据的标准差
标准差越大,数据的波动越 ,反之也成立.
考试内容
考试
要求
基本
思想
统计的基本思想:利用样本特征去估计总体的特征是统计的基本思想.注意样本的选取要有足够的代表性.
c
基本
方法
利用数据进行决策:利用数据进行决策时,要全面、多角度地去分析已有数据,比较它们的代表性和波动大小,发现它们的变化规律和发展趋势,从而作出正确决策.
1.(·湖州)数据-2,-1,0,1,2,4的中位数是( )
A.0 B.0.5 C.1 D.2
2.(·温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:
零件个数(个)
5
6
7
8
人数(人)
3
15
22
10
表中表示零件个数的数据中,众数是( )
A.5个 B.6个 C.7个 D.8个
3.(·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
甲
乙
丙
丁
平均数(环)
9.14
9.15
9.14
9.15
方差
6.6
6.8
6.7
6.6
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.甲 B.乙 C.丙 D.丁
4.(·台州)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
A.方差 B.中位数 C.众数 D.平均数
【问题】某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).
甲、乙两人射箭成绩统计表
第1次
第2次
第3次
第4次
第5次
甲成绩
9
4
7
4
6
乙成绩
7
5
7
a
7
(1)a=________,x乙=________;
(2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;
②请你从平均数和方差的角度分析,谁将被选中;
(4)通过(1)、(2)、(3)解答体验,数据的分析应运用哪些统计量,这些统计量特点是什么?
【归纳】通过开放式问题,归纳、疏理统计量:平均数、中位数、众数、极差、方差、标准差,以及它们的特征;对统计量进行合理地选择和恰当地运用,全面、多角度地去分析已有数据,利用数据进行决策.
类型一 平均数、众数和中位数的计算与应用
(·嘉兴模拟)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民年4月份用电量的调查结果:
居民(户)
1
3
2
4
月用电量(度/户)
40
50
55
60
那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
A.中位数是55 B.众数是60 C.方差是29 D.平均数是54
【解后感悟】此题主要运用了平均数、众数、中位数及方差的知识,解题时分别计算出众数、中位数、平均数及方差后找到正确的选项即可.求中位数这类问题一般要把数据从小到大排列,设数据的总数为n,若n为奇数,则中位数为第个数;若n为偶数,则中位数为第个数与+1个数的平均数.
(·衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的( )
A.众数 B.方差 C.平均数 D.中位数
【解后感悟】此题反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用;解决这类问题的关键是弄清概念,平均数的大小与一组数据里的每一个数据均有关系,其中任何一个数据的变动都会引起平均数的变动;众数着眼于各数据出现的频率,其大小只与这组数据中的部分数据有关,可以是一个或多个;中位数则与数据的排列位置有关,某些数据的变动对中位数没有影响,计算时要分清数据是奇数个,还是偶数个.
1.(1)(·宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是( )
A.方差 B.平均数 C.中位数 D.众数
(2)(·台湾)图1、图2分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b;中位数分别为c、d,则下列关于a、b、c、d的大小关系,何者正确?( )
A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d
2.甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9.
乙:5,9,7,10,9.
(1)填写下表:
平均数
众数
中位数
方差
甲
8
____________________
8
0.4
乙
____________________
9
____________________
3.2
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差____________________.(填“变大”、“变小”或“不变”).
类型二 方差、标准差的计算与应用
(·吉林)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.
(1)已求得甲的平均成绩为8环,求乙的平均成绩;
(2)观察图形,直接写出甲,乙这10次射击成绩的方差S,S哪个大;
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选______参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.
【解后感悟】方差是用来衡量一组数据波动大小的量,一般地设n个数据,x1,x2,…,xn的平均数为x,则方差S2=[(x1-x)2+(x2-x)2+…+(xn-x)2],方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
3.(·舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a-2,b-2,c-2的平均数和方差分别是( )
A.3,2 B.3,4 C.5,2 D.5,4
4.(·郑州模拟)九(3)班为了参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,根据成绩优秀的人数和优秀率分别绘制成如下统计图.
根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数x甲组=7,方差S=1.5.请通过计算说明,哪一组成绩优秀的人数较稳定?
类型三 利用统计量解决实际问题
(·青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩/环
中位数/环
众数/环
方差
甲
a
7
7
1.2
乙
7
b
8
c
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
【解后感悟】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用;熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
5.八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表
参赛同学
答对题数
答错题数
未答题数
A
19
0
1
B
17
2
1
C
15
2
3
D
17
1
2
E
/
/
7
(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;
(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.
①求E同学的答对题数和答错题数;
②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).
【实际探究题】
小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:
第一步:小亮在测点D处用测角仪测得仰角∠ACE=β.
第二步:小红量得测点D处到树底部B的水平距离BD=a.
第三步:量出测角仪的高度CD=b.
之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图.
请你根据两个统计图提供的信息解答下列问题.
(1)把统计图中的相关数据填入相应的表格中:
a
b
β
第一次
第二次
第三次
平均值
(2)根据表中得到的样本平均值计算出风筝的高度AB.(参考数据:≈1.732,≈1.414,结果保留3个有效数字).
【方法与对策】本题是实践性应用题,通过社会实践活动来收集数据、整理和分析数据,得出结论;同时该题利用统计图来结合直角三角形,在解直角三角形时,如果有直角三角形直接利用边角关系直接求出,如果没有直角三角形可以构造直角三角形再利用边角关系去解.这类题型解直角三角形与统计结合是中考命题趋向.
【忽视选用合适的公式计算平均数】
某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表,则这20户家庭这个月的平均用水量是 吨.
用水量(吨)
4
5
6
8
户数
3
8
4
5
参考答案
第31讲 数据的分析及其应用
【考点概要】
1. 中间位置 平均数 次数最多 2.平均数 [(x1-x)2+(x2-x)2+…+(xn-x)2] 大 大
【考题体验】
1.B 2.C 3.D 4.A
【知识引擎】
【解析】(1)求乙射的总环数→计算表中已知总环数→求a,x乙.故答案4,6. (2)观察乙表中成绩数→在折线图上描点连线.如图. (3)方差的概念→计算乙的方差→比较甲、乙方差大小→结论.①乙,乙的方差=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于甲的方差是3.6,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.(4)平均数、中位数、众数、极差、方差、标准差.反映数据集中程度的统计量有平均数、中位数、众数;反映数据的离散程度的统计量有极差、方差、标准差.
【例题精析】
例1 C
例2 因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.
例3 (1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环); (2)根据图象可知:甲的波动大于乙的波动,则S>S; (3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.
例4 (1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2; (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
【变式拓展】
1. (1)D (2)A
2. (1)8 8 9 (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛. (3)变小
3. B
4.(1)∵第一次成绩优秀的人数是11人,优秀率为55%,∴选取的学生总人数为=20(人).∴第三次成绩的优秀率是×100%=65%.∴乙组第四次成绩优秀的人数为20×85%-8=9(人),补图略. (2)乙组成绩优秀人数的平均数为x乙组==7,方差S=[(6-7)2+(8-7)2+(5-7)2+(9-7)2]=2.5.∵两组成绩优秀人数的平均数相同,甲组成绩优秀人数的方差小于乙组成绩优秀人数的方差,∴甲组成绩优秀的人数较稳定.
5.(1)x==82.5(分). (2)①设E同学答对x题,答错y题,由题意得解得∴E同学答对12题,答错1题. ②C同学,他实际答对14题,答错3题,未答3题.
【热点题型】
【分析与解】(1)要根据题中所给的条形统计图和折线统计图完成下列表格.
a
b
β
第一次
15.71
1.31
29.5°
第二次
15.83
1.33
30.8°
第三次
15.89
1.32
29.7°
平均值
15.81
1.32
30°
(2)利用解直角三角形的知识即可求出风筝的高度.由题意得:四边形BDCE为矩形,∴EC=BD=15.81m,BE=CD=1.32m,∠AEC=90°,在Rt△AEC中,∠AEC=90°,∠β=30°,∵tanβ=.∴AE=EC·tan30°=15.81×≈15.81×0.577≈9.122m.∴AB=AE+BE=9.122+1.32≈10.4(m).∴风筝的高度AB约为10.4m.
【错误警示】平均用水量为x==5.8(吨),故填5.8.
相关学案
这是一份2022年中考数学总复习第32讲《简单事件的概率及其应用》讲解(含答案) 学案,共13页。学案主要包含了解后感悟,实际应用题,方法与对策,考点概要,考题体验,知识引擎,例题精析,变式拓展等内容,欢迎下载使用。
这是一份2022年中考数学总复习第16讲《函数的应用》讲解(含答案) 学案,共13页。学案主要包含了解后感悟,实际应用题,方法与对策,建立坐标系时忽视符号,考题体验,知识引擎,例题精析,变式拓展等内容,欢迎下载使用。
这是一份2022年中考数学总复习第9讲《方程(组)的应用》讲解(含答案) 学案,共10页。