终身会员
搜索
    上传资料 赚现金
    2018-2019学年河北省衡水市武邑中学高三(上)期末数学试卷(理科)
    立即下载
    加入资料篮
    2018-2019学年河北省衡水市武邑中学高三(上)期末数学试卷(理科)01
    2018-2019学年河北省衡水市武邑中学高三(上)期末数学试卷(理科)02
    2018-2019学年河北省衡水市武邑中学高三(上)期末数学试卷(理科)03
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2018-2019学年河北省衡水市武邑中学高三(上)期末数学试卷(理科)

    展开
    这是一份2018-2019学年河北省衡水市武邑中学高三(上)期末数学试卷(理科),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1.(5分)已知集合,,,0,1,2,,则
    A.,1,B.,0,1,C.,0,2,D.,1,2,
    2.(5分)已知复数满足,则
    A.B.C.D.
    3.(5分)已知中,,,则等于
    A.B.C.或D.或
    4.(5分)已知随机变量服从正态分布,,,则
    A.0.89B.0.78C.0.22D.0.11
    5.(5分)函数的最小正周期为
    A.B.C.D.
    6.(5分)已知向量,,若与共线,则实数的值是
    A.B.2C.D.4
    7.(5分)已知某几何体的三视图如图所示,则该几何体的最大边长为
    A.B.C.D.
    8.(5分)执行如图的程序框图,则输出的值为
    A.1B.C.D.0
    9.(5分)若双曲线的一条渐近线被圆所截得的弦长为2,则的离心率为
    A.2B.C.D.
    10.(5分)已知直三棱柱中,,,,则异面直线与所成角的余弦值为
    A.B.C.D.
    11.(5分)已知函数(e)是自然对数的底数),则的极大值为
    A.B.C.1D.
    12.(5分)已知双曲线的左,右焦点分别为,,,是双曲线上的两点,且,,则该双曲线的离心率为
    A.B.C.D.
    二、填空题(本大题共4小题,每小题5分,共20分)
    13.(5分)函数且恒过定点 .
    14.(5分)已知函数是定义在上的奇函数,则
    15.(5分)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则

    16.(5分)当,时,不等式恒成立,则实数的取值范围是 .
    三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)
    17.(10分)的内角、、所对的边分别为、、,且.
    (1)求角的值;
    (2)若的面积为,且,求外接圆的面积.
    18.(12分)设为等差数列的前项和,,.
    (1)求的通项公式;
    (2)若,,成等比数列,求.
    19.(12分)有编号为1,2,3,,的个学生,入坐编号为1,2,3,的个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为,已知时,共有6种坐法.
    (1)求的值;
    (2)求随机变量的概率分布列和数学期望.
    20.(12分)抛物线的焦点为,过点的直线交抛物线于,两点.
    (1)为坐标原点,求证:;
    (2)设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值
    21.(12分)在直角坐标系中,曲线的参数方程为为参数),若以直角坐标系中的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为为实数.
    (1)求曲线的普通方程和曲线的直角坐标方程;
    (2)若曲线与曲线有公共点,求的取值范围.
    22.(12分)在平面直角坐标系中,已知曲线的参数方程为为参数),曲线的直角坐标方程为.以直角坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线的极坐标方程为,
    (1)求曲线、的极坐标方程;
    (2)设点、为射线与曲线、除原点之外的交点,求的最大值.
    2018-2019学年河北省衡水市武邑中学高三(上)期末数学试卷(理科)
    参考答案与试题解析
    一、选择题(本大题共12小题,每小题5分,共60分)
    【解答】解:由,解得:,即,
    ,0,1,2,,
    ,1,.
    故选:.
    【解答】解:由复数满足,
    得,
    故选:.
    【解答】解:中,,,,
    由正弦定理得:,
    ,,
    则.
    故选:.
    【解答】解:随机变量服从正态分布,,
    这组数据对应的正态曲线的对称轴


    故选:.
    【解答】解:函数
    最小正周期为,
    故选:.
    【解答】解:,且与共线;


    故选:.
    【解答】解:由三视图还原原几何体如图,
    可知该几何体为四棱锥,底面为直角梯形,,底面,
    ,.
    由图求得,,,.
    则该几何体的最大边长为.
    故选:.
    【解答】解:模拟程序的运行,可得程序运行后计算并输出的值.
    由于

    故选:.
    【解答】解:双曲线的一条渐近线不妨为:,
    圆的圆心,半径为:2,
    双曲线的一条渐近线被圆所截得的弦长为2,
    可得圆心到直线的距离为:,
    解得:,可得,即.
    故选:.
    【解答】解:【解法一】如图所示,设、、分别为,和的中点,
    则、夹角为和夹角或其补角
    (因异面直线所成角为,
    可知,

    作中点,则为直角三角形;
    ,,
    中,由余弦定理得



    在中,;
    在中,由余弦定理得

    又异面直线所成角的范围是,,
    与所成角的余弦值为.
    【解法二】如图所示,
    补成四棱柱,求即可;
    ,,




    故选:.
    【解答】解:,
    故(e),
    故,
    令,解得:,
    令,解得:,
    故在递增,在递减,
    时,取得极大值,
    故选:.
    【解答】解:设,,则,,,
    在中,由余弦定理得:

    解得,,,,
    是直角三角形,
    在△中,,代入得,即.
    则该双曲线的离心率为.
    故选:.
    二、填空题(本大题共4小题,每小题5分,共20分)
    【解答】解:当,即时,,
    函数的图象恒过定点.
    故答案为:.
    【解答】解:根据题意,函数是定义在上的奇函数,则函数关于点对称,

    故答案为:.
    【解答】解:抛物线的焦点,
    过,两点的直线方程为,
    联立可得,,
    设,,,,
    则,,
    ,,

    ,,,,


    整理可得,,

    即,

    故答案为:2
    【解答】解:当时,不等式对任意恒成立;
    当时,可化为,
    令,则,
    当时,,在,上单调递增,
    (1),;
    当时,可化为,
    由式可知,当时,,单调递减,当时,,单调递增,
    ,;
    综上所述,实数的取值范围是,即实数的取值范围是,.
    故答案为:,.
    三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)
    【解答】解:(1),
    可得:,由正弦定理可得:,
    化为:,
    ,可得,,

    (2),的面积为,
    可得:,

    由余弦定理可得:,可得:,
    设三角形的外接圆半径为,由正弦定理可得:,
    外接圆的面积.
    【解答】(12分)
    解:(1)为等差数列的前项和,,.

    解得,.
    故的通项公式.
    (2)由(1)知.
    ,,成等比数列,.
    即,解得.
    故.
    【解答】解:(1)当时,有种坐法,

    即,
    ,或(舍去),

    (2)学生所坐的座位号与该生的编号不同的学生人数为,
    由题意知的可能取值是0,2,3,4,
    当变量是0时表示学生所坐的座位号与该生的编号都相同,
    当变量是2时表示学生所坐的座位号与该生的编号有2个相同,
    当变量是3时表示学生所坐的座位号与该生的编号有1个相同,
    当变量是4时表示学生所坐的座位号与该生的编号有0个相同,




    的概率分布列为:

    【解答】(1)证明:由抛物线,得其焦点,
    当直线斜率不存在时,不妨设为第一象限的点,可得,,
    则;
    当直线的斜率存在时,设直线方程为,
    联立,得.
    设,,,,
    则,,


    综上,;
    (2)解:设直线方程为.
    将直线的方程与抛物线的方程联立,消去得.
    设,,,,
    ,.
    由点与原点关于点对称,得是线段的中点,
    从而点与点到直线的距离相等,
    四边形的面积等于.

    时,四边形的面积最小,最小值是4.
    【解答】解:(1)因为,
    所以,.

    平方得:

    两式相减得,
    故曲线的普通方程为,,.
    另由得的直角坐标方程为.
    (2)如图,当直线过点时,;
    当直线与相切时,
    由得,
    由△得,
    从而,曲线与曲线有公共点时,.
    【解答】解(1)由曲线的参数方程为参数)消去参数得,
    即,
    曲线的极坐标方程为.
    由曲线的直角坐标方程,得,
    曲线的极坐标方程.
    (2)联立,得,,
    联立,得,.

    ,当时,有最大值2.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
    日期:2019/12/17 21:21:04;用户:18434650699;邮箱:18434650699;学号:19737267
    0
    2
    3
    4





    相关试卷

    河北省衡水市武邑中学2023-2024学年高三上学期期末考试数学试卷(PDF版附解析): 这是一份河北省衡水市武邑中学2023-2024学年高三上学期期末考试数学试卷(PDF版附解析),共15页。

    2024届河北省衡水市武邑中学高三上学期期中数学试题含答案: 这是一份2024届河北省衡水市武邑中学高三上学期期中数学试题含答案,共21页。试卷主要包含了单选题,多选题,填空题,解答题,证明题等内容,欢迎下载使用。

    2018-2019学年河北省衡水市武邑中学高二(上)期末数学试卷(理科): 这是一份2018-2019学年河北省衡水市武邑中学高二(上)期末数学试卷(理科),共54页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map