终身会员
搜索
    上传资料 赚现金

    广东省深圳市2020届高三二模考试数学(理)试题+Word版含解析

    立即下载
    加入资料篮
    广东省深圳市2020届高三二模考试数学(理)试题+Word版含解析第1页
    广东省深圳市2020届高三二模考试数学(理)试题+Word版含解析第2页
    广东省深圳市2020届高三二模考试数学(理)试题+Word版含解析第3页
    还剩24页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳市2020届高三二模考试数学(理)试题+Word版含解析

    展开

    这是一份广东省深圳市2020届高三二模考试数学(理)试题+Word版含解析,共27页。
    2020年深圳市高三年级第二次调研考试数学(理科)本试卷共6页,23小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设z,则|z|=(    A.  B.  C. 1 D. 【答案】B【解析】【分析】把已知等式变形,再由商的模等于模的商求解即可.【详解】解:∵z,∴|z|=||.故选:B.【点睛】本题考查复数模的求法,考查数学转化思想方法,是基础题.2.已知集合则(    A.  B.  C.  D. 【答案】D【解析】【分析】根据指数函数的值域化简集合的表示,解一元二次不等式化简集合的表示,最后根据集合的交集和并集的定义、子集的定义进行判断即可.【详解】因为所以,故选项A不正确;,故选项B不正确;根据子集的定义有.故选:D【点睛】本题考查了集合交集、并集的运算,考查了子集的定义,考查了指数函数的值域,考查了解一元二次不等式,考查了数学运算能力.3.设α为平面,mn为两条直线,若,则“”是“”的(    A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件 D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分性和必要性的定义,结合线面垂直的性质进行判断即可.【详解】当时,如果,不一定能推出,因为直线n可以在平面α外,时,如果,根据线面垂直的性质一定能推出,所以若,则“”是“”的必要不充分条件.故选:C【点睛】本题考查了必要不充分条件的判断,考查了线面垂直的性质,考查了推理论证能力.4.已知双曲线C)的两条渐近线互相垂直,则C的离心率为(    A.  B. 2 C.  D. 3【答案】A【解析】【分析】根据双曲线和渐近线的对称性,结合双曲线离心率的公式、之间的关系、双曲线渐近线方程进行求解即可.【详解】双曲线C的渐近线方程为:,因为该双曲线的两条渐近线互相垂直,所以有.故选:A【点睛】本题考查了已知双曲线渐近线的性质求离心率问题,考查了数学运算能力,属于基础题.5.已知定义在R上的函数满足,当时,,则    A.  B. 2 C.  D. 8【答案】A【解析】【分析】根据等式,结合已知函数的解析式、指数幂运算公式进行求解即可【详解】因为,所以因为,所以.故选:A【点睛】本题考查了求函数值,考查了指数运算公式的应用,考查了数学运算能力.6.若,…,的平均数为a,方差为b,则,…,的平均数和方差分别为(    A. 2a,2b B. 2a,4b C. ,2b D. ,4b【答案】D【解析】【分析】直接根据平均值和方差的性质得到答案.【详解】根据平均值和方差的性质知:,…,的平均数和方差分别为.故选:D.【点睛】本题考查了平均值和方差,意在考查学生的计算能力和对于平均值和方差的性质的灵活运用.7.记等差数列的前n项和为,若,则    A.  B.  C.  D. 0【答案】A【解析】【分析】直接利用等差数列和的性质得到答案.【详解】根据等差数列和的性质知:,故,即.故选:A.【点睛】本题考查了等差数列和的性质,意在考查学生的计算能力和应用能力.8.函数fx的部分图象大致为(    A.  B. C.  D. 【答案】B【解析】【分析】先判断函数的奇偶性,结合选项中函数图象的对称性,先排除不符合题意的,然后结合特殊点函数值的正负即可判断.【详解】因为f(﹣xfx),所以fx)为偶函数,图象关于y轴对称,排除选项A,C,f(2)因为,所以,所以f(2)<0,排除选项D.故选:B.【点睛】本题主要考查函数图象与性质及其应用,还考查了数形结合的思想方法,属于中档题.9.已知椭圆C的右焦点为FO为坐标原点,C上有且只有一个点P满足,则C的方程为(    A.  B.  C.  D. 【答案】D【解析】【分析】根据对称性知轴上,,计算得到答案.【详解】根据对称性知轴上,,故,解得故椭圆方程为:.故选:D.【点睛】本题考查了椭圆方程,意在考查学生计算能力,确定轴上是解题的关键.10.下面图1是某晶体的阴阳离子单层排列的平面示意图.其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都相切,A,B,C,D是其中四个圆的圆心,则    A. 32 B. 28 C. 26 D. 24【答案】C【解析】【分析】建立以为一组基底的基向量,其中的夹角为60°,根据平面向量的基本定理可知,向量均可以用表示,再结合平面向量数量积运算法则即可得解.【详解】解:如图所示,建立以为一组基底的基向量,其中的夹角为60°,,,.故选:C.【点睛】本题考查平面向量的混合运算,观察图形特征,建立基向量是解题的关键,考查学生的分析能力和运算能力,属于中档题.11.意大利数学家斐波那契(1175年—1250年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,…,该数列从第三项起,每一项都等于前两项之和,即故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为(设是不等式的正整数解,则的最小值为(    A. 10 B. 9 C. 8 D. 7【答案】C【解析】【分析】根据题意,是不等式的正整数解,化简得,即,根据数列的单调性,求出成立的的最小值,即可求出答案.【详解】解析:∵是不等式的正整数解,,则数列即为斐波那契数列,,即显然数列为递增数列,所以数列亦为递增数列,不难知道,且∴使得成立的的最小值为8,∴使得成立的的最小值为8.故选:C.【点睛】本题考查数列的新定义,以及利用数列的单调性求最值,还根据对数运算化简不等式,考查转化思想和化简运算能力.12.已知直线与函数)的图象相交,将其中三个相邻交点从左到右依次记为ABC,且满足有下列结论: n的值可能为2②当,且时,的图象可能关于直线对称③当时,有且仅有一个实数ω,使得上单调递增;④不等式恒成立其中所有正确结论的编号为(    A. ③ B. ①② C. ②④ D. ③④【答案】D【解析】【分析】根据三角函数的图像性质,依次分析四个结论即可求解.【详解】解析:如图所示, 不妨设,且线段的中点为显然有,且的图象关于直线对称,,∴,即,(1),且,∴由正弦曲线的图像可知,).),,(2)由等式(1),(2)可得,即,且,∴,且对于结论①,显然,故结论①错误:对于结论②,当,且时,则,若的图象关于直线对称,),即显然与矛盾,从而可知结论②错误:对于结论③,∵,且在区间上单调递增,,∴,故结论③正确;对于结论④,下证不等式),(法一)当时,),即),(法二)即证不等式)恒成立,构造函数),显然函数单调递增,时,,即不等式)恒成立,故结论④正确:综上所述,正确的结论编号为③④故选:D【点睛】本题考查三角函数的图像性质,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.曲线在点切线的方程为__________.【答案】【解析】【分析】求导,带入得到斜率,通过点斜式得到切线方程,再整理成一般式得到答案.【详解】带入得切线的斜率切线方程为,整理得【点睛】本题考查导数的几何意义,通过求导求出切线的斜率,再由斜率和切点写出切线方程.难度不大,属于简单题.14.若xy满足约束条件,则的最大值为__________.【答案】2【解析】【分析】画出可行域,表示可行域上的点到原点的斜率,分析并计算的最大值.【详解】作出可行域如图所示,为可行域内的点到原点的斜率,由图得的最大值为,得的最大值为.故答案为:【点睛】本题考查了线性规则,正确画出不等式组表示的平面区域是解题的基础,理解目标函数的意义是解题的关键.15.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足和医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援若将4名医生志愿者分配到两家医院(每人去一家医院,每家医院至少去1人),则共有__________种分配方案.【答案】14【解析】【分析】根据题意先将4名医生分成2组,再分配的两家医院即可求得分配方案的种数,分组时有两种分组方法,同时注意是平均分组问题.【详解】由题先将4名医生分成2组,有种,再分配的两家医院有种.故答案为:14【点睛】本题考查了排列组组合的综合应用,考查了先选再排的技巧,分组时要注意分类讨论,还有要特别注意平均分组问题的计数方法.16.已知正方形边长为3,点EF分别在边上运动(E不与AB重合,F不与AD重合),将为折痕折起,当AEF位置变化时,所得五棱锥体积的最大值为__________.【答案】【解析】【分析】欲使五棱锥的体积最大,须有平面平面,求出底面五边形的面积以及高,利用棱锥的体积公式得出体积表达式,再由基本不等式以及导数得出五棱锥体积的最大值.【详解】解析:不妨设 在直角三角形中,易知边上的高为又五棱锥的底面面积为欲使五棱锥的体积最大,须有平面平面,∴,则,∴,则不难知道,当时,取得最大值综上所述,当时,五棱锥的体积取得最大值故答案为:.【点睛】本题主要考查了利用导数解决实际应用问题,涉及了棱锥的体积公式和基本不等式的应用,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.中,D上的点,平分的面积为.(1)求的长;(2)求.【答案】(1)(2)【解析】【分析】(1)根据三角形面积公式可得,可得,根据余弦定理可得(2)根据余弦定理求出,可得,再利用以及两角差的正弦公式可得结果.【详解】(1)因为面积为平分中,由余弦定理,得.(2)在中,由余弦定理,得因为平分,所以【点睛】本题考查了余弦定理、三角形内角和定理、三角形的面积公式、两角差的正弦公式,属于基础题..18.如图,三棱柱中,底面为等边三角形,EF分别为的中点,.(1)证明:平面(2)求直线与平面所成角的大小.【答案】(1)证明见解析;(2)【解析】【分析】(1)通过计算可得,通过证明平面,可得,再根据直线与平面垂直的判定定理可得平面(2)先说明直线两两垂直,再以的方向为xyz轴的正方向,以点E为原点,建立空间直角坐标系,然后利用空间向量可求得结果.【详解】(1)证明:设,∵∵点E为棱的中点,∴,∴.∵三棱柱的侧面为平行四边形,∴四边形为矩形,∵点F为棱的中点,,∴.∵三棱柱的底面是正三角形,E的中点,.,且平面平面,且相交,平面,∵平面,∴,∵平面.(2)由(1)可知平面,∴,∴平面∴三棱柱是正三棱柱,的中点为M,则直线两两垂直,分别以的方向为xyz轴的正方向,以点E为原点,建立如图所示的空间直角坐标系,.设平面的一个法向量为,则,则,则不妨取,则,则,所以设直线与平面所成角为因为,所以则直线与平面所成角的大小为.【点睛】本题考查了线面垂直的性质与判定,考查了直线与平面所成角的向量求法,属于中档题.19.足球运动被誉为“世界第一运动”.为推广足球运动,某学校成立了足球社团由于报名人数较多,需对报名者进行“点球测试”来决定否录取,规则如下:(1)下表是某同学6次的训练数据,以这150个点球中的进球频率代表其单次点球踢进的概率.为加入足球社团,该同学进行了“点球测试”,每次点球是否踢进相互独立,将他在测试中所踢的点球次数记为,求(2)社团中的甲、乙、丙三名成员将进行传球训练,从甲开始随机地将球传给其他两人中的任意一人,接球者再随机地将球传给其他两人中的任意一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,接到第n次传球的人即为第次触球者,第n次触球者是甲的概率记为.i)求(直接写出结果即可);ii)证明:数列为等比数列.【答案】(1)(2)(iii)证明见解析;【解析】【分析】(1)先求出踢一次点球命中的概率,然后根据相互独立事件的乘法公式分别求出取1,2,3的概率,再根据离散型随机变量的期望公式可求得结果;(2)(i)根据传球顺序分析可得答案;(ii)根据题意可得,再变形为,根据等比数列的定义可证结论.【详解】(1)这150个点球中的进球频率为则该同学踢一次点球命中的概率由题意,可能取1,2,3,则的期望.(2)(i)因为从甲开始随机地将球传给其他两人中的任意一人,所以第1次触球者是甲的概率,显然第2次触球者是甲的概率,第2次传球有两种可能,所以第3次触球者是甲的概率概ii)∵第n次触球者是甲的概率为所以当时,第次触球者是甲的概率为,第次触球者不是甲的概率为.从而,又是以为首项,公比为的等比数列.【点睛】本题考查了样本估计总体,离散型随机变量的期望,考查了递推关系以及等比数列的概念;考查分析问题、解决问题的能力,建模能力,处理数据能力.属于中档题.20.在平面直角坐标系中,P为直线上的动点,动点Q满足,且原点O在以为直径的圆上.记动点Q的轨迹为曲线C(1)求曲线C的方程:(2)过点的直线与曲线C交于AB两点,点D(异于AB)在C上,直线分别与x轴交于点MN,且,求面积的最小值.【答案】(1)(2)【解析】【分析】(1)设动点,表示出,再由原点O在以为直径的圆上,转化为,得到曲线C的方程.(2)设而不解,利用方程思想、韦达定理构建面积的函数关系式,再求最小值.【详解】解:(1)由题意,不妨设,则O在以为直径的圆上,∴,∴,∴曲线C的方程为.(2)设依题意,可设(其中),由方程组消去x并整理,得,则同理可设可得又∵,∴,∴∴当时,面积取得最小值,其最小值为.【点睛】本题以直线与抛物线为载体,其几何关系的向量表达为背景,利用方程思想、韦达定理构建目标函数,利用坐标法解决几何问题贯穿始终,主要考查直线与抛物线的位置关系最值问题,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力.21.已知函数.(其中常数,是自然对数的底数)(1)若,求上的极大值点;(2)()证明上单调递增;)求关于的方程上的实数解的个数.【答案】(1);(2)()证明见解析,()当时,方程上的实数解的个数为,当时,方程上的实数解的个数为.【解析】【分析】(1)首先求出函数的导数,利用导数得到函数的单调区间,再根据单调区间即可得到函数的极大值点.(2)()首先根据的单调性只需证明,将问题转化为证明,构造函数,再结合的单调性即可证明.(ii)首先证明,再证明函数的最大值,设,分别求出的零点个数,从而得到方程解得个数.【详解】(1).时,.增函数极大值减函数 所以函数的极大值点为.(2)()因为,所以在上必存在唯一的实数,使得.所以为增函数,为减函数.要证明上单调递增,只需证明即可.又因为,所以即证即可.,所以为减函数.时,,即即证所以上单调递增.)先证明时,因为,所以为增函数.所以,即.再证明函数的最大值.因为,所以.因为,所以.所以.下面证,令,则即证.所以函数为增函数.时,,即.即证:.时,为减函数,所以上有唯一零点.时,,且为增函数.①当时,,即,所以上没有零点.②当时,,即,所以上有唯一零点.综上所述:当时,方程上的实数解的个数为时,方程上的实数解的个数为.【点睛】本题主要考查函数的单调区间、极值和最值,同时考查了利用导数研究函数的零点问题,考查了学生的计算能力,属于难题.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.选修4-4:坐标系与参数方程22.椭圆规是用来画椭圆的一种器械,它的构造如图所示,在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定的滑块AB,它们可分别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一周,则点M的轨迹C是一个椭圆,其中|MA|=2,|MB|=1,如图,以两条导槽的交点为原点O,横槽所在直线为x轴,建立直角坐标系.(1)将以射线Bx为始边,射线BM为终边的角xBM记为φ(0≤φ<2π),用表示点M的坐标,并求出C的普通方程;(2)已知过C的左焦点F,且倾斜角为α(0≤α)的直线l1C交于DE两点,过点F且垂直于l1的直线l2C交于GH两点.当,|GH|,依次成等差数列时,求直线l2的普通方程.【答案】(1);(2)【解析】【分析】(1)用三角函数表示出点M的坐标,直接利用转换关系把极坐标方程转换为直角坐标方程;(2)设出直线l1的参数方程,与椭圆方程联立利用直线参数的几何意义求出,根据题意有,列出方程求出直线l1的斜率即可求得直线l2的方程.【详解】(1)设Mxy)依题意得:x=2cosφ,ysinφ,所以M(2cosφ,sinφ),由于cos2φ+sin2φ=1,整理得.(2)由于直线l1的倾斜角为α(),且l1l2所以直线l2的倾斜角为,依题意易知:F),可设直线l1的方程为t为参数),代入得到:易知设点D和点E对应的参数为t1t2所以.由参数的几何意义:GH对应的参数为t3t4,同理对于直线l2,将α换为所以由于,|GH|,依次成等差数列,所以,则,解得所以,又,所以所以直线l2的斜率为,直线l2的直角坐标方程为x.【点睛】本题考查极坐标方程和直角坐标方程之间的转换、直线参数方程中参数的几何意义、韦达定理的应用、等差数列的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于较难题.选修4-5:不等式选讲23.已知abc为正实数,且满足a+b+c=1.证明:(1)|a|+|b+c﹣1|(2)(a3+b3+c3)()≥3.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据abc为正实数,且满足a+b+c=1,得到b+c﹣1=﹣a<0,则|a|+|b+c﹣1|=|a|+|﹣a|,再利用绝对值三角不等式求解.(2)利用(a3+b3+c3)≥3abc,得到(a3+b3+c3)()≥3abc),进而变形为,再利用基本不等式求解.【详解】(1)∵abc为正实数,且满足a+b+c=1,b+c﹣1=﹣a<0,∴|a|+|b+c﹣1|=|a|+|﹣a|≥|(a)+(﹣a)|.当且仅当(a)(﹣a)≥0,即0时,等号成立.∴|a|+|b+c﹣1|(2)(a3+b3+c3)()≥3abc=3(a+b+c)=3.当且仅当abc时等号成立.∴(a3+b3+c3)()≥3.【点睛】本题主要考查绝对值三角不等式,基本不等式的应用,还考查了运算求解的能力,属于中档题.
      

    相关试卷

    辽宁省抚顺市2020届高三二模考试数学(理)试题 Word版含解析(1):

    这是一份辽宁省抚顺市2020届高三二模考试数学(理)试题 Word版含解析(1),共24页。试卷主要包含了本试卷分第Ⅰ卷两部分,请将各题答案填写在答题卡上,本试卷主要考试内容等内容,欢迎下载使用。

    河南省开封市2020届高三二模考试数学(理)试题 Word版含解析(1):

    这是一份河南省开封市2020届高三二模考试数学(理)试题 Word版含解析(1),共26页。

    广东省湛江市2020届高三二模考试数学(理)试题 Word版含解析(1):

    这是一份广东省湛江市2020届高三二模考试数学(理)试题 Word版含解析(1),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map