







人教版八年级上册14.1.1 同底数幂的乘法课前预习ppt课件
展开
这是一份人教版八年级上册14.1.1 同底数幂的乘法课前预习ppt课件,共22页。PPT课件主要包含了问题情景,知识回顾,探究新知,观察讨论,aaa,am+n,猜想证明,同底数幂的乘法性质,107+4,x2+5等内容,欢迎下载使用。
一种电子计算机每秒可进行1015次运算,它工作103秒可进行多少次运算?
列式:1015×103
=a·a· … ·a
求几个相同因数的积的运算叫做乘方。
1、乘方an(a≠0)的意义及各部分的含义是什么?
2、填空: (1) 32的底数是____,指数是____,可表示为________。(2)(-3)3的底数是___,指数是___,可表示为___________。(3)a5的底数是____,指数是____,可表示为_________ 。(4)(a+b)3的底数是_____,指数是_____,可表示为 _______________ 。
乘方表示几个相同因式积的形式
(-3)×(-3)×(-3)
a· a ·a · a· a
(a+b)(a+b)(a+b)
练一练 : (1) 25表示什么? (2) 10×10×10×10×10 可以写成什么形式?
25 = .
10×10×10×10×10 = .
式子103×102中的两个因数有何特点?
(2×2×2)×(2×2)
a3×a2 = = a( ) .
= a a a a a
我们把底数相同的幂称为同底数幂
请同学们观察下面各题左右两边,底数、指数有什么关系? 103 ×102 = 10( ) 23 ×22 = 2( ) a3× a2 = a( )
猜想: am · an= ? (当m、n都是正整数) 分组讨论,并尝试证明你的猜想是否正确.
= 10( ); = 2( );= a( ) 。
猜想: am · an= (m、n都是正整数)
am · an =
=am+n (乘方的意义)
由此可得同底数幂的乘法性质:
am · an = am+n (m、n都是正整数)
am · an = am+n (当m、n都是正整数)
想一想: 当三个或三个以上同底数幂相乘时,是否也 具有这一性质呢? 怎样用公式表示?
请你尝试用文字概括这个结论。
我们可以直接利用它进行计算.
如 am·an·ap =
(m、n、p都是正整数)
幂的底数必须相同,相乘时指数才能相加.
(1)107×104
(3) x2 • x5
(5) y • y2 • y3
(4)23×24×25
( -a15 )
(3) -a7 ·(-a)8
(2) x5 ·x3
(4) b5 · b
下面的计算对不对?如果不对,怎样改正?(1)b5 · b5= 2b5 ( ) (2)b5 + b5 = b10 ( )(3)x5 ·x5 = x25 ( ) (4)-y6 · y5 = y11 ( )(5)c · c3 = c3 ( ) (6)m + m3 = m4 ( )
m + m3 = m + m3
b5 · b5= b10
b5 + b5 = 2b5
x5 · x5 = x10
-y6 · y5 =-y11
c · c3 = c4
例1 计算:(1)(-3)7×( -3)6; (2)( )9 ×( );
(3) -x3 • x5; (4) b2m • b2m+1.
(1)(-3)7×( -3)6 = (-3)7+6 = (-3)13 = -3
(3) -x3 • x5 = -x3+5 = -x8;
(4) b2m • b2m+1 = b2m+2m+1 = b4m +1.
指数较大时,结果以幂的形式表示.
(1) -y · (-y)2 · y3
(2) (x+y)3 · (x+y)4
原式= -y · y2 · y3 = -y1+2+3=-y6
(x+y)3 · (x+y)4 =
am · an = am+n
(x+y)3+4 =(x+y)7
(1)am·an·ap=—— (m、n、p为正整数)
(2)(x+y)m-1·(x+y)m+1·(x+y)3-m=——·
(1) - a3 · a6 ; (2) -x · (-x) 4·x 3
解:(1) 原式 = -a3 + 6
(4)原式 = x3m +2m—1
(3)(x-y)2· (y-x)3 (4) x3m · x2m—1(m为正整数)
同底数幂的乘法公式:
am ·an = am+n
逆用: am+n =
填空:(1) x4· = x9(2) (-y)4 · =(-y)11(3) a2m · =a3m(4) (x-y)2 · =(x-y)5
填空:(1) 8 = 2x,则 x = ;(2) 8× 4 = 2x,则 x = ;(3) 3×27×9 = 3x,则 x = .
1、下列各式的结果等于26的是( ) A 2+25 B 2 x25 C 23x25 D
2、下列计算结果正确的是( ) A a3 · a3=a9 B m2 · n2=mn4 C xm · x3=x3m D y · yn=yn+1
1、x2m+2可写成( ) A 2m+1 B x2m+x2 C x2 ·xm+1 D x2m ·x2
2、ax=9,ay=81,则ax+y等于( ) A 9 B 81 C 90 D 729
相关课件
这是一份初中数学人教版八年级上册14.1.1 同底数幂的乘法集体备课ppt课件,共21页。PPT课件主要包含了×102,算一算等内容,欢迎下载使用。
这是一份初中人教版14.1.1 同底数幂的乘法教学课件ppt,共18页。PPT课件主要包含了知识回顾,同底数幂的乘法,请你一定要记住哟,×22,a3·a2,m×5n,am·an,25+2,a3+2,5m+n等内容,欢迎下载使用。
这是一份2020-2021学年14.1.1 同底数幂的乘法教学ppt课件,共18页。PPT课件主要包含了知识要点,ap+ac+bc,×103,5m+n,m+n,解b5·bb6,x4n+1,b-a5,y16,计算下列各题等内容,欢迎下载使用。
