2022年中考数学一轮复习第17讲《全等三角形》讲学案(含答案)
展开
这是一份2022年中考数学一轮复习第17讲《全等三角形》讲学案(含答案),共13页。学案主要包含了考点解析,典例解析,中考热点,思路分析,方法指导等内容,欢迎下载使用。
中考数学一轮复习第17讲《全等三角形》【考点解析】知识点一:全等三角形性质【例题】(重庆市B卷·7分)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.【变式】(湖北武汉·8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【考点】全等三角形的判定和性质【答案】见解析【解析】证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.知识点二:全等三角形判定:【例题1】(•永州)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.【变式】(•金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【例题2】(•莆田)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是( )A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD【分析】要得到△POC≌△POD,现有的条件为有一对角相等,一条公共边,缺少角,或着是边,根据全等三角形的判定定理即可得到结论.于是答案可得.【解答】解:∵OP是∠AOB的平分线,∴∠AOP=∠BOP,∵OP=OP,∴根据‘HL’需添加PC⊥OA,PD⊥OB,根据‘SAS’需添加OC=OD,根据‘AAS’需添加∠OPC=∠OPD,故选D.【点评】本题考查了角平分线的定义,全等三角形的判定,熟记全等三角形的判定定理是解题的关键.【变式】(•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【典例解析】【例题1】(•宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个 B.2个 C.3个 D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.【例题2】(2013年佛山市,22,8分)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1) 叙述三角形全等的判定方法中的推论AAS;(2) 证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.分析:(1)两边及其夹角分别对应相等的两个三角形全等.(2)根据三角形内角和定理和全等三角形的判断定理ASA来证明.解:(1)三角形全等的判定方法中的推论AAS指的是:两边及其夹角分别对应相等的两个三角形全等. (2)已知:在△ABC与△DEF中,∠A=∠D,∠C=∠F,BC=EF.求证:△ABC≌△DEF.证明:如图,在△ABC与△DEF中,∠A=∠D,∠C=∠F(已知),∴∠A+∠C=∠D+∠F(等量代换).又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理),∴∠B=∠E.∴在△ABC与△DEF中,,∴△ABC≌△DEF(ASA).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL. 注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 【例题3】(2013•东营,23,10分) (1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.∵∠BAD+∠ABD=90°∴∠CAE=∠ABD又AB=AC ∴△ADB≌△CEA∴AE=BD,AD=CE∴DE=AE+AD= BD+CE (2)∵∠BDA =∠BAC=,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—∴∠DBA=∠CAE∵∠BDA=∠AEC=,AB=AC∴△ADB≌△CEA∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF∴∠DBF=∠FAE∵BF=AF∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.点拨:利用全等三角形的性质证线段相等是证两条线段相等的重要方法.【中考热点】【热点1】(浙江省绍兴市·8分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系.【分析】(1)相等.连接AC,根据SSS证明两个三角形全等即可.(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.【热点2】(广西百色·8分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小. 【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°. 【热点3】(2013山东菏泽,16,12分)(每题6分)(1)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD,连结AE、DE、DC. ①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【思路分析】①根据题意可以寻找△ABE≌△CBD的条件SAS即可;②可以经过证△ABE≌△CBD,然后根据角的和差进行计算.【解】(1)①证明:∵∠ABC=90°∴∠ABE=∠CBD=90° 在△ABE与△CBD中∵∴△ABE≌△CBD ②解:在△ABC中∵AB=CB,∠ABC=90°∴∠CAB=45°∵∠CAE=30°∴∠BAE=∠CAE-∠CAB=15°∵△ABE≌△CBD∴∠BAE=∠BCD=15°∴∠BDC=90°-15°=75°【方法指导】此题主要考查了全等三角形的判定,关键是熟练掌握判定定理:SSS、SAS、ASA、AAS,HL.解决此题,利用等腰三角形性质可以寻找需要的边、角. 【热点4】(2013江西,23,10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现: 在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是 (填序号即可) ①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考: 在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索: 在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状. 答: .【思路分析】(1) 由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=45°也正确;(2)直觉告诉我们MD和ME是垂直且相等的关系,一般由全等证线段相等,受图1△DFM≌△MGE的启发,应想到取中点构造全等来证MD=ME,证MD⊥ME就是要证∠DME=90°,由△DFM≌△MGE得∠EMG=∠MDF, △DFM中四个角相加为180°,∠FMG可看成三个角的和,通过变形计算可得∠DME=90°. (3)只要结论,不要过程,在(2)的基础易知为等腰直角三解形.[解析]操作发现:①②③④ 答:MD=ME,MD⊥ME, 先证MD=ME;如图2,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,∵M是BC的中点,∴MF∥AC,MF=AC,又∵EG是等腰Rt△AEC斜边上的中线,∴EG⊥AC且EG=AC,∴MF=EG,同理可证DF=MG,∵MF∥AC,∠MFA=∠BAC=180°同事可得∠MGA+∠BAC=180°,∴∠MFA=∠MGA,又∵EG⊥AC,∴∠EGA=90°,同理可得∠DFA=90°,∴∠MFA+∠DFA=∠MGA=∠EGA,即∠DFM=∠MEG,又MF=EG,DF=MG,∴△DFM≌△MGE(SAS),∴MD=ME, 再证MD⊥ME;证法一:∵MG∥AB,∴∠MFA+∠FMG=180°,又∵△DFM≌△MGE,∴∠MEG=∠MDF,∴∠MFA+∠FMD+∠DME+∠MDF=180°,其中∠MFA+∠FMD+∠MDF=90°,∴∠DME=90°,即MD⊥ME; 证法二:如图2,MD与AB交于点H,∵AB∥MG,∴∠DHA=∠DMG,又∵∠DHA=∠FDM+∠DFH即∠DHA=∠FDM+90°∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;类比探究答:等腰直角三解形【方法指导】本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.
相关学案
这是一份中考数学一轮突破 基础过关 第17讲线段,共12页。学案主要包含了直线,角平分线,余角和补角,相交线与平行线等内容,欢迎下载使用。
这是一份中考数学一轮复习讲义第02讲《实数的计算》学案,共19页。学案主要包含了实数的运算,非负数的性质,实数的大小比较等内容,欢迎下载使用。
这是一份备战中考初中数学导练学案50讲—第19讲全等三角形(讲练版),共26页。学案主要包含了疑难点拨,问题发现,类比探究,拓展应用等内容,欢迎下载使用。