|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案
    立即下载
    加入资料篮
    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案01
    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案02
    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案

    展开
    这是一份河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案,共13页。试卷主要包含了本试卷主要考试内容,函数的最小值为等内容,欢迎下载使用。

    邢台市“五岳联盟”2022届高三上学期10月联考

    数学

    注意事项:

    1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

    3.考试结束后,将本试卷和答题卡一并交回。

    4.本试卷主要考试内容:人教A版必修145

    一、选择题:本题共8小题,每小题5分,共40.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1.已知集合,则  

    A.  B.

    C.  D.

    2.若向量,则  

    A. B. C. D.

    3.如图,一个“心形”由两个函数的图象构成,则“心形”上部分的函数解析式可能为(   

    A. B. C. D.

    4.的内角ABC的对边分别为abc.已知,则  

    A. B. C. D.

    5.在等差数列中,,则的取值范围是(   

    A. B. C. D.

    6.将函数的图象向左平移个单位长度后,得到函数的图象,则(   

    A.为奇函数  B.的图象关于直线对称

    C.的图象关于点对称 D.上单调递减

    7.函数的最小值为(   

    A. B. C.4 D.

    8.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,竣工1周后室内甲醛浓度为6.253周后室内甲醛浓度为1,且室内甲醛浓度(单位:)与竣工后保持良好通风的时间t)(单位:周)近似满足函数关系式,则该文化娱乐场所竣工后的甲醛浓度若要达到安全开放标准,至少需要放置的时间约为(   

    A.5 B.6 C.7 D.8

    二、选择题:本题共4小题,每小题5分,共20.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0.

    9.表示不大于x的最大整数,已知集合,则(   

    A.  B.

    C. D.

    10.下列函数中,定义域与值域相同的是

    A.  B.

    C.  D.

    11.,则(   

    A.  B.

    C.  D.

    12.已知函数的定义域为,当时,,则(   

    A.

    B.的图象关于直线对称

    C.时,

    D.函数4个零点

    三、填空题:本题共4小题,每小题5分,共20.把答案填在答题卡的相应位置.

    13.设向量均为单位向量,且,则___________.

    14.,则___________.

    15.写出一个同时具有下列四个性质的函数___________.

    ①定义域为;②单调递增;③;④.

    16.一张B4纸的厚度为0.093,将其对折后厚度变为,第2次对折后厚度变为,…,第n次对折后厚度变为,则___________,数列的前n项和为____________.(本题第一空2分,第二空3分)

    四、解答题:本题共6小题,共70.解答应写出必要的文字说明、证明过程或演算步骤.

    17.10分)

    如图,在梯形中,.

    1)用表示

    2)若,且,求的大小.

    18.12分)

    已知函数)的部分图象如图所示.

    1)求的解析式;

    2)把的图象上所有点的横坐标伸长到原来的m)倍(纵坐标不变)后,得到函数的图象,若上有最大值,求m的取值范围.

    19.12分)

    已知数列的前n项和为,且.数列的前n项积为,且.

    1)求的通项公式;

    2)求数列的前n项和.

    20.12分)

    已知函数.

    1)若,求

    2)当时,讨论函数的零点个数.

    21.12分)

    如图,点O在点P的正东方向,现有一个圆形音乐喷泉,点O为喷泉中心,用无人机于点P正上空的点处,测得点O的俯角为,点B的俯角为PAOB四点共线,AB均在圆O上,且.已知圆O的面积为平方米,且.

    1)求无人机的飞行高度;

    2)如图,现以AMN三点为顶点在音乐喷泉内建造三条排水暗渠,已知暗渠造价为1000/米,且建造暗渠的预算资金为35000.若要求成等差数列,试问完成三条排水暗渠的建造是否有可能会超预算?说明你的理由.

    22.12分)

    已知函数满足.

    1)试问是否存在,使得函数为奇函数?若存在,求a的值;若不存在,请说明理由.

    2)若,求m的取值范围.

    高三上学期10月联考

    数学参考答案

    1.B  【解析】本题考查集合的补集,考查数学运算的核心素养.

    因为,所以,故.

    2.B  【解析】本题考查平面向量的共线问题,考查数学运算的核心素养.

    因为,所以,解得.

    3.C  【解析】本题考查函数的图象与函数的解析式,考查读图能力与逻辑推理的核心素养.

    由图可知,“心形”关于y轴对称,所以上部分的函数为偶函数,排除BD.又“心形”函数的最大值为1,且,排除A.故选C.

    4.A  【解析】本题考查正弦、余弦定理的应用,考查数学运算的核心素养.

    由正弦定理可得,整理得,又由余弦定理可知,所以,解得.

    5.A  【解析】本题考查等差数列的通项公式,考查逻辑推理与数学运算的核心素养.

    设公差为d,因为,所以,即,从而.

    6.D  【解析】本题考查三角函数的图象及其性质,考查逻辑推理的核心素养.

    由题意可知,则不是奇函数,所以A错误;因为,所以BC均错误.故选D.

    7.C  【解析】本题考查基本不等式的应用,考查逻辑推理与数学运算的核心素养.

    因为,当且仅当,即时,等号成立,

    所以,当且仅当,即时,等号成立.的最小值为4.

    8.B  【解析】本题考查函数的实际应用,考查数学建模与数学运算的核心素养.

    由题意可知,,解得.设该文化娱乐场所竣工后放置周后甲醛浓度达到安全开放标准,则,整理得,因为,所以,即.故至少需要放置的时间约为6.

    9.ABD  【解析】本题考查不等式的解集与集合的运算,考查数学抽象与数学运算的核心素养.

    因为,所以,所以.

    因为,所以.

    因为

    所以.

    10.BCD  【解析】本题考查函数的定义域与值域,考查数学抽象与逻辑推理的核心素养.

    的定义域为,值域为.

    的定义域和值域均为.

    的定义域和值域均为.

    的定义域为,因为,且,所以的值域为,则的值域为.

    11.BC  【解析】本题考查三角恒等变换,考查数学运算的核心素养.

    因为,所以,则

    所以

    因为,所以

    所以

    .

    12.ACD  【解析】本题考查函数的综合,考查数学抽象与逻辑推理的核心素养.

    因为,且,所以

    所以,所以A正确.

    因为,所以的图象关于点对称,B错误.

    时,.

    因为的图象关于点对称,的定义域为,所以

    所以,故当时,C正确.

    ,得,因为的值域为,所以由,作出的部分图象,如图所示.由图可知,它们有4个交点,故函数4个零点,D正确.

    13.-7  【解析】本题考查平面向量的数量积,考查数学运算的核心素养.

    因为,所以,所以.

    14.9  【解析】本题考查三角恒等变换与函数的解析式,考查数学运算与数学抽象的核心素养.

    因为,所以,则.

    15.(答案不唯一,只要满足)即可)  【解析】本题为开放题,考查基本初等函数的性质,考查数学抽象与逻辑推理的核心素养.

    结合前面三个性质及对数函数的性质可以得出的解析式为),再根据最后一个性质可得.

    16.  【解析】本题考查数列的综合应用,考查逻辑推理、数学运算的核心素养及化归与转化的数学思想.

    因为每对折一次,纸张的厚度增加一倍,所以数列是首项为0.186,公比为2的等比数列,

    所以.

    因为,所以

    的前n项和

    .

    17.解:(1·····································································1

    ·············································································2

    . ··············································································4

    2)因为,所以.································································5

    因为··········································································7

    ,所以······································································8

    解得··········································································9

    .  ···········································································10

    18.解:(1)由图可知·······························································1

    ,解得.  ·······································································3

    将点代入,得),·······························································4

    因为,所以····································································5

    的解析式为.  ···································································6

    2)依题意可得.  ································································8

    因为上有最大值,且当时,······················································9

    所以·········································································11

    ,所以,即m的取值范围是.·······················································12

    19.解:(1)当时,································································1

    时,.·········································································2

    经检验,当时,满足,因此.·························································3

    时,;当时,.··································································5

    时,满足,因此. ································································6

    2)由(1)知

    ·············································································7

    ·············································································8

    两式相减得····································································9

    ·············································································10

    ············································································11

    . ···········································································12

    20.解:(1)∵·································································1

    ···········································································3

    . ············································································5

    2)当时,···································································6

    ,且上单调递增,·······························································7

    ,得.·······································································8

    时,方程只有1个解,的零点个数为1···············································9

    时,方程各有1个解,且这2个解不相等,的零点个数为2······························10

    时,方程只有1个解,的零点个数为1.···············································11

    综上,当时,的零点个数为1;当时,的零点个数为2.·····································12

    21.解:(1)设无人机的飞行高度为h米,圆形音乐喷泉的半径为r米,

    由题意可知,,则. ································································1

    ,∴········································································2

    ··········································································3

    ,故无人机的飞行高度为12. ·····················································4

    2)∵成等差数列,

    ,则.·········································································5

    ,则.  ·······································································6

    由正弦定理,可得

    (米),(米),

    (米),········································································8

    (米).·······································································10

    ,∴,∴

    ··········································································11

    ,∴完成三条排水暗渠的建造有可能会超预算.········································12

    22.解:(1)由,得································································1

    根据这两个等式,消去.···························································3

    因此),······································································4

    故存在,使得函数为奇函数.·························································5

    2)设函数,则.

    时,;当时,.································································6

    因为,所以.······································································7

    因为

    所以恒成立,···································································8

    所以恒成立.···································································9

    设函数),令),

    ··········································································10

    当且仅当,即时,等号成立,此时取得最小值·········································11

    m的取值范围为. ······························································12

    []另外,本题中的最小值也可以用求导的方法求得,且的极小值点为.

     

    相关试卷

    2023-2024学年河北省邢台市五岳联盟高二上学期期中数学试题含答案: 这是一份2023-2024学年河北省邢台市五岳联盟高二上学期期中数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024届河北省邢台市五岳联盟高三上学期第四次月考数学试题含答案: 这是一份2024届河北省邢台市五岳联盟高三上学期第四次月考数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    河北省邢台市“五岳联盟”部分重点学校2022届高三上学期期中考试数学试题含答案: 这是一份河北省邢台市“五岳联盟”部分重点学校2022届高三上学期期中考试数学试题含答案,文件包含数学答案pdf、数学试题pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map