2022年中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案试卷
展开这是一份2022年中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案试卷,共19页。试卷主要包含了求△ABC的面积,一般用割补法,所以点A的坐标为,此方程无解等内容,欢迎下载使用。
(1)求k与m的值;
(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;
(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.
图1
例2如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;
(3)试证明:PQ的中点在△ABC的一条中位线上.
图1 图2
例3如图1,已知抛物线 SKIPIF 1 < 0 (b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.
(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.
图1
例4 如图1,已知抛物线的方程C1: SKIPIF 1 < 0 (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
图1
例5如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
图1 图2
例6如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.
(1)求此抛物线的解析式;
(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.
,
图1
因动点产生的相似三角形问题答案
例1如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).
(1)求k与m的值;
(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;
(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.
图1
动感体验
请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.
思路点拨
1.直线AD//BC,与坐标轴的夹角为45°.
2.求△ABC的面积,一般用割补法.
3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.
满分解答
(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).
将点A(2, 4)代入 SKIPIF 1 < 0 ,得k=8.
(2)将点B(n, 2),代入 SKIPIF 1 < 0 ,得n=4.
所以点B的坐标为(4, 2).
图2
设直线BC为y=x+b,代入点B(4, 2),得b=-2.
所以点C的坐标为(0,-2).
由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.
所以AB= SKIPIF 1 < 0 ,BC= SKIPIF 1 < 0 ,∠ABC=90°.
所以S△ABC= SKIPIF 1 < 0 = SKIPIF 1 < 0 =8.
(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD= SKIPIF 1 < 0 ,AC= SKIPIF 1 < 0 .
由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.
所以△ACE与△ACD相似,分两种情况:
①如图3,当 SKIPIF 1 < 0 时,CE=AD= SKIPIF 1 < 0 .
此时△ACD≌△CAE,相似比为1.
②如图4,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 .解得CE= SKIPIF 1 < 0 .此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).
图3 图4
考点伸展
第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.
一般情况下,在坐标平面内计算图形的面积,用割补法.
如图5,作△ABC的外接矩形HCNM,MN//y轴.
由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.
图5
例2如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;
(3)试证明:PQ的中点在△ABC的一条中位线上.
图1 图2
动感体验
请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ的中点H在
△ABC的中位线EF上.
思路点拨
1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.
2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.
3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.
满分解答
(1)Rt△ABC中,AC=6,BC=8,所以AB=10.
△BPQ与△ABC相似,存在两种情况:
① 如果 SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 .解得t=1.
② 如果 SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 .
图3 图4
(2)作PD⊥BC,垂足为D.
在Rt△BPD中,BP=5t,csB= SKIPIF 1 < 0 ,所以BD=BPcsB=4t,PD=3t.
当AQ⊥CP时,△ACQ∽△CDP.
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 .
图5 图6
(3)如图4,过PQ的中点H作BC的垂线,垂足为F,交AB于E.
由于H是PQ的中点,HF//PD,所以F是QD的中点.
又因为BD=CQ=4t,所以BF=CF.
因此F是BC的中点,E是AB的中点.
所以PQ的中点H在△ABC的中位线EF上.
考点伸展
本题情景下,如果以PQ为直径的⊙H与△ABC的边相切,求t的值.
如图7,当⊙H与AB相切时,QP⊥AB,就是 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
如图8,当⊙H与BC相切时,PQ⊥BC,就是 SKIPIF 1 < 0 ,t=1.
如图9,当⊙H与AC相切时,直径 SKIPIF 1 < 0 ,
半径等于FC=4.所以 SKIPIF 1 < 0 .
解得 SKIPIF 1 < 0 ,或t=0(如图10,但是与已知0<t<2矛盾).
图7 图 8 图9 图10
例3如图1,已知抛物线 SKIPIF 1 < 0 (b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.
(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.
图1
动感体验
请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠OQA=∠B的时刻,也存在∠OQ′A=∠B的时刻.
思路点拨
1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.
2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.
3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.
满分解答
(1)B的坐标为(b, 0),点C的坐标为(0, SKIPIF 1 < 0 ).
(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC.
因此PD=PE.设点P的坐标为(x, x).
如图3,联结OP.
所以S四边形PCOB=S△PCO+S△PBO= SKIPIF 1 < 0 =2b.
解得 SKIPIF 1 < 0 .所以点P的坐标为( SKIPIF 1 < 0 ).
图2 图3
(3)由 SKIPIF 1 < 0 ,得A(1, 0),OA=1.
①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.
当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时,△BQA∽△QOA.
所以 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 .所以符合题意的点Q为( SKIPIF 1 < 0 ).
②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。
因此△OCQ∽△QOA.
当 SKIPIF 1 < 0 时,△BQA∽△QOA.此时∠OQB=90°.
所以C、Q、B三点共线.因此 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 .此时Q(1,4).
图4 图5
考点伸展
第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而∠QOA与∠QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况.
这样,先根据△QOA与△QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置.
如图中,圆与直线x=1的另一个交点会不会是符合题意的点Q呢?
如果符合题意的话,那么点B的位置距离点A很近,这与OB=4OC矛盾.
例4如图1,已知抛物线的方程C1: SKIPIF 1 < 0 (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
图1
动感体验
请打开几何画板文件名“12黄冈25”,拖动点C在x轴正半轴上运动,观察左图,可以体验到,EC与BF保持平行,但是∠BFC在无限远处也不等于45°.观察右图,可以体验到,∠CBF保持45°,存在∠BFC=∠BCE的时刻.
思路点拨
1.第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BH+EH最小.
2.第(4)题的解题策略是:先分两种情况画直线BF,作∠CBF=∠EBC=45°,或者作BF//EC.再用含m的式子表示点F的坐标.然后根据夹角相等,两边对应成比例列关于m的方程.
满分解答
(1)将M(2, 2)代入 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .解得m=4.
(2)当m=4时, SKIPIF 1 < 0 .所以C(4, 0),E(0, 2).
所以S△BCE= SKIPIF 1 < 0 .
(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.
设对称轴与x轴的交点为P,那么 SKIPIF 1 < 0 .
因此 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 .所以点H的坐标为 SKIPIF 1 < 0 .
(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.
由于∠BCE=∠FBC,所以当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时,△BCE∽△FBC.
设点F的坐标为 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .
解得x=m+2.所以F′(m+2, 0).
由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .所以 SKIPIF 1 < 0 .
由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .
整理,得0=16.此方程无解.
图2 图3 图4
②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,
由于∠EBC=∠CBF,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时,△BCE∽△BFC.
在Rt△BFF′中,由FF′=BF′,得 SKIPIF 1 < 0 .
解得x=2m.所以F′ SKIPIF 1 < 0 .所以BF′=2m+2, SKIPIF 1 < 0 .
由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 .
综合①、②,符合题意的m为 SKIPIF 1 < 0 .
考点伸展
第(4)题也可以这样求BF的长:在求得点F′、F的坐标后,根据两点间的距离公式求BF的长.
例5如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
图1 图2
动感体验
请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图象,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.
思路点拨
1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.
2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.
3.第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变.变化的直线PQ的斜率,因此假设直线PQ与AB的交点G在x轴的下方,或者假设交点G在x轴的上方.
满分解答
(1)抛物线的对称轴为直线 SKIPIF 1 < 0 ,解析式为 SKIPIF 1 < 0 ,顶点为M(1, SKIPIF 1 < 0 ).
(2) 梯形O1A1B1C1的面积 SKIPIF 1 < 0 ,由此得到 SKIPIF 1 < 0 .由于 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .整理,得 SKIPIF 1 < 0 .因此得到 SKIPIF 1 < 0 .
当S=36时, SKIPIF 1 < 0 解得 SKIPIF 1 < 0 此时点A1的坐标为(6,3).
(3)设直线AB与PQ交于点G,直线AB与抛物线的对称轴交于点E,直线PQ与x轴交于点F,那么要探求相似的△GAF与△GQE,有一个公共角∠G.
在△GEQ中,∠GEQ是直线AB与抛物线对称轴的夹角,为定值.
在△GAF中,∠GAF是直线AB与x轴的夹角,也为定值,而且∠GEQ≠∠GAF.
因此只存在∠GQE=∠GAF的可能,△GQE∽△GAF.这时∠GAF=∠GQE=∠PQD.
由于 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 .
图3 图4
考点伸展
第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.
例6如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.
(1)求此抛物线的解析式;
(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.
,
图1
动感体验
请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,△PAM的形状在变化,分别双击按钮“P在B左侧”、“ P在x轴上方”和“P在A右侧”,可以显示△PAM与△OAC相似的三个情景.
双击按钮“第(3)题”, 拖动点D在x轴上方的抛物线上运动,观察△DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,△DCA的面积最大.
思路点拨
1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.
2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.
3.按照两条直角边对应成比例,分两种情况列方程.
4.把△DCA可以分割为共底的两个三角形,高的和等于OA.
满分解答
(1)因为抛物线与x轴交于A(4,0)、B(1,0)两点,设抛物线的解析式为 SKIPIF 1 < 0 ,代入点C的 坐标(0,-2),解得 SKIPIF 1 < 0 .所以抛物线的解析式为 SKIPIF 1 < 0 .
(2)设点P的坐标为 SKIPIF 1 < 0 .
①如图2,当点P在x轴上方时,1<x<4, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
如果 SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 不合题意.
如果 SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 .解得 SKIPIF 1 < 0 .
此时点P的坐标为(2,1).
②如图3,当点P在点A的右侧时,x>4, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
解方程 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .此时点P的坐标为 SKIPIF 1 < 0 .
解方程 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 不合题意.
③如图4,当点P在点B的左侧时,x<1, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
解方程 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .此时点P的坐标为 SKIPIF 1 < 0 .
解方程 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .此时点P与点O重合,不合题意.
综上所述,符合条件的 点P的坐标为(2,1)或 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
图2 图3 图4
(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为 SKIPIF 1 < 0 .
设点D的横坐标为m SKIPIF 1 < 0 ,那么点D的坐标为 SKIPIF 1 < 0 ,点E的坐标为 SKIPIF 1 < 0 .所以 SKIPIF 1 < 0 SKIPIF 1 < 0 .
因此 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 .
当 SKIPIF 1 < 0 时,△DCA的面积最大,此时点D的坐标为(2,1).
图5 图6
考点伸展
第(3)题也可以这样解:
如图6,过D点构造矩形OAMN,那么△DCA的面积等于直角梯形CAMN的面积减去△CDN和△ADM的面积.
设点D的横坐标为(m,n) SKIPIF 1 < 0 ,那么
SKIPIF 1 < 0 .
由于 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
相关试卷
这是一份挑战中考数学压轴题——因动点产生的等腰三角形问题,共8页。
这是一份中考数学压轴题《因动点产生的等腰三角形问题》,共19页。试卷主要包含了所以4+y2=16等内容,欢迎下载使用。
这是一份2022年中考数学冲刺压轴题《因动点产生的等腰三角形问题》含答案试卷,共19页。试卷主要包含了所以4+y2=16等内容,欢迎下载使用。