![(安徽版)2021年中考数学模拟练习卷03(含答案)第1页](http://www.enxinlong.com/img-preview/2/3/12311524/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(安徽版)2021年中考数学模拟练习卷03(含答案)第2页](http://www.enxinlong.com/img-preview/2/3/12311524/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(安徽版)2021年中考数学模拟练习卷03(含答案)第3页](http://www.enxinlong.com/img-preview/2/3/12311524/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
(安徽版)2021年中考数学模拟练习卷03(含答案)
展开
这是一份(安徽版)2021年中考数学模拟练习卷03(含答案),共16页。试卷主要包含了如果反比例函数的图象经过点,不等式组等内容,欢迎下载使用。
中考数学模拟练习卷一.选择题(共10小题,满分40分)1.四个有理数﹣1,2,0,﹣3,其中最小的是( )A.﹣1 B.2 C.0 D.﹣3 2.如图所示为某几何体的示意图,该几何体的左视图应为( )A. B. C. D. 3.如果反比例函数的图象经过点(﹣2,3),那么k的值是( )A. B.﹣6 C. D.6 4.如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=25°,那么∠2的度数是( )A.100° B.105° C.115° D.120° 5.不等式组:的解集用数轴表示为( )A. B. C. D. 6.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( )每周做家务的时间(小时)0123[来源:Z+xx+k.Com]4人数(人)22311A.3,2.5 B.1,2 C.3,3 D.2,2 7.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A.3a+2b B.3a+4b C.6a+2b D.6a+4b 8.如图,在平行四边形ABCD和平行四边形BEFG中,已知AB=BC,BG=BE,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠DCB=∠GEF=120°,则=( )A. B. C. D. 9.下列四个函数图象中,当x<0时,y随x的增大而减小的是( )A. B. C. D. 10.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为( )A.(3,1) B.(3,) C.(3,) D.(3,2) 二.填空题(共4小题,满分20分,每小题5分)11.如果的平方根等于±2,那么a= .12.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 米.13.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则cos∠OBC为 .14.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为 . 三.解答题(共2小题,满分16分,每小题8分)15.(8分)如果:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值. 16.(8分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果.在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用 [()n﹣()n]表示(其中,n≥1),这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数. 四.解答题(共2小题,满分16分,每小题8分)17.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少? 18.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠. 五.解答题(共2小题,满分20分,每小题10分)19.(10分)定义新运算:对于任意实数a,b(其中a≠0),都有a*b=,等式右边是通常的加法、减法及除法运算,比如:2*1==1(1)求5*4的值;(2)若x*2=1(其中x≠0),求x的值. 20.(10分)如图1是大润发超市从一楼到二楼的自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2,AB的长度是5米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为60°,求二楼的层高BC(结果保留根号) 六.解答题(共1小题,满分12分,每小题12分)21.(12分)如图所示,AB是⊙O直径,BD是⊙O的切线,OD⊥弦BC于点F,交⊙O于点E,且∠A=∠D.(1)求∠A的度数;(2)若CE=5,求⊙O的半径. 七.解答题(共1小题,满分12分,每小题12分)22.(12分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表: 每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.八.解答题(共1小题,满分14分,每小题14分)23.(14分)问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.
参考答案一.选择题1.D. 2.C. 3.[来源:Zxxk.Com]B. 4.C. 5.A. 6.D. 7.A. 8.B. 9.C. 10.B. [来源:学科网]二.填空题11.16. 12.1.04×10﹣4. 13.. 14.. 三.解答题15.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1. 16.解:当n=1时, [()n﹣()n]=(﹣)=×=1;当n=2时, [()n﹣()n]= [()2﹣()2]=×(+)(﹣)=×1×=1. 四.解答题17.解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:﹣=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=3.5.答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时. [来源:Zxxk.Com]18.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==; (2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖. 五.解答题19.解:(1)根据题意得:5*4=+=; (2)∵x*2=1,∴+=1,在方程两边同乘x得:1+(x﹣2)=x,方程无解.20.解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2,∴=.设BD=k(米),AD=2k(米),则AB=k(米).∵AB=5(米),∴k=5,∴BD=5(米),AD=10(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD=10×=10(米),∴BC=10﹣5(米). 六.解答题21.解:(1)∵BD是⊙O的切线,AB是⊙O直径,∴∠OBD=90°,∴∠D+∠DOB=90°,∵AO=OE,∴∠A=∠AEO,∴∠DOB=2∠A,∵∠A=∠D,∴3∠A=90°,∴∠A=30°;(2)连接BE,∵OD⊥弦BC于点F,∴弧CE=弧BE,∴CE=BE=5,∵AB是⊙O直径,∴∠AEB=90°,∵∠A=30°,∴AB=2BE=10,∴⊙O的半径为5. 七.解答题22.解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时y=80000,∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高. 八.解答题23.解:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN. (2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4. (3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.
相关试卷
这是一份中考数学模拟练习卷03,共8页。试卷主要包含了计算,下列调查中,适合采用全面调查,在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份(湖北版)2021年中考数学模拟练习卷03(含答案),共18页。试卷主要包含了|1﹣|=,下列运算正确的是等内容,欢迎下载使用。
这是一份(河南版)2021年中考数学模拟练习卷03(含答案),共29页。试卷主要包含了﹣3的倒数是,民族图案是数学文化中的一块瑰宝,下列计算,正确的是,点M等内容,欢迎下载使用。