终身会员
搜索
    上传资料 赚现金
    1.1.2 空间向量的数量积运算练习题01
    1.1.2 空间向量的数量积运算练习题02
    1.1.2 空间向量的数量积运算练习题03
    还剩8页未读, 继续阅读
    免费
    使用下载券免费下载
    加入资料篮
    立即下载

    数学人教A版 (2019)1.1 空间向量及其运算免费同步训练题

    展开
    这是一份数学人教A版 (2019)1.1 空间向量及其运算免费同步训练题,共11页。

    1.1.2 空间向量的数量积运算

    基础过关练

    题组一 数量积的概念及其运算

    1.下列各命题中,不正确的命题的个数为(  )

    =|a|;m(λa)·b=(mλ)a·b(m,λR);

    a·(b+c)=(b+c)·a;a2b=b2a.

                     

    A.0 B.3 C.2 D.1

    2.(2019山东省实验中学高二下期中)已知正四面体ABCD的棱长为a,E,F分别是BC,AD的中点,·的值为(  )

    A.a2 B.a2 C.a2 D.a2

    3.在棱长为1的正方体ABCD-A1B1C1D1,=a,=b,=c,a·(b+c)的值为(  )

    A.1 B.0 C.-1 D.-2

    题组二 利用空间向量的数量积求夹角

    4.若非零向量a,b满足|a|=|b|,(2a-b)·b=0,ab的夹角为(  )

    A.30° B.60° C.120° D.150°

    5.已知空间向量a,b,c满足a+b+c=0,|a|=2,|b|=3,|c|=4,ab的夹角为(  )

    A.30° B.45°

    C.60° D.以上都不对

    6.(2019湖北襄阳第五中学高二上月考)如图,正方体ABCD-A1B1C1D1,异面直线ACBC1所成角的大小为( 易错 )

    A. B. C. D.

    7.已知|a|=2,|b|=1,<a,b>=60°,则使向量abλa-2b的夹角为钝角的实数λ的取值范围是    . 

    题组三 利用空间向量的数量积求距离(线段长度)

    8.(2019湖南常德桃源一中高二上质检)已知a,b均为单位向量,它们的夹角为60°,那么|a+3b|=(  )

    A.13 B. C.2 D.

    9.(2020吉林第一中学阶段测试)平行六面体ABCD-A1B1C1D1,向量,,两两的夹角均为60°,||=1,||=2,||=3,||等于(  )

    A.5 B.6 C.4 D.8

    10.如图,120°的二面角α-l-β,Al,Bl,ACα,BDβACAB,BDAB,垂足分别为A,B,已知AC=AB=BD=6,则线段CD的长为    . 

    题组四 利用空间向量的数量积证明垂直

    11.若向量m垂直于向量ab,向量nab(λ,μRλ,μ0),(  )

    A.mn

    B.mn

    C.m既不平行于n,也不垂直于n

    D.以上三种情况都有可能

    12.(2020北京陈经纶中学高二上期中)已知四边形ABCD为矩形,PA平面ABCD,连接AC,BD,PB,PC,PD,则下列各组向量中,数量积不一定为零的是(  )

    A. B.

    C. D.

    13.已知|a|=3,|b|=4,m=a+b,n=ab,<a,b>=135°,mn,λ=    . 

    14.已知空间四边形OABC,AOB=BOC=AOC,OA=OB=OC,M,N分别是OA,BC的中点,GMN的中点,用向量方法证明OGBC.

     

     

    15.已知四棱锥P-ABCD的底面ABCD是平行四边形,PA底面ABCD,如果BCPB,求证四边形ABCD是矩形.

     

     

     

     

     


     

    能力提升练

    题组一 利用空间向量的数量积求角度

    1.(2020四川师大附属中学高二上期中,)已知直三棱柱ABC-A1B1C1,ABC=120°,AB=2,BC=CC1=1,则异面直线AB1BC1所成角的余弦值为(  )

                     

    A. B. C. D.

    2.(2020安徽合肥一六八中学高二上月考,)正四棱锥S-ABCD的侧棱长与底面边长相等,ESC的中点,BESA所成角的余弦值为(  )

    A. B. C. D.

    3.(2020山西大同第一中学高二上月考,)在棱长为2的正方体ABCD-A1B1C1D1,O是底面ABCD的中心,E,F分别是CC1,AD的中点,那么异面直线OEFD1所成角的余弦值等于(  )

    A. B. C. D.

    4.(多选)()在正方体ABCD-A1B1C1D1,M是线段A1C1上的动点,则下列结论正确的有(  )

    A.异面直线AM,BD所成的角为

    B.异面直线CM,AB所成的角可为

    C.异面直线CM,BD所成的角为

    D.异面直线CM,B1B所成的角可为

    5.(2020北京十一学校高二上期中,)在长方体ABCD-A1B1C1D1,BC=CC1=1,AD1B=,则直线AB1BC1所成角的余弦值为    . 

    6.(2020广西柳州高级中学期中,)如图所示,在三棱锥A-BCD,DA,DB,DC两两垂直,DB=DC=DA=2,EBC的中点.

    (1)证明:AEBC;

    (2)求直线AEDC所成角的余弦值.

     

     

     

     

     

     

    题组二 利用空间向量的数量积求距离(长度)

    7.(2020河北冀州中学高二月考,)如图所示,在三棱锥A-BCD,AB平面BCD,BCCD,AB=BC=1,CD=2,ECD的中点,AE的长为(深度解析)

    A. B. C.2 D.

    8.(2020山东济南历城第二中学高二上月考,) 如图,在四棱锥P-ABCD,底面ABCD是边长为1的正方形,侧棱PA的长为2,PAABAD的夹角都等于60°,MPC的中点,=a,=b,=c.

    (1)试用a,b,c表示向量;

    (2)BM的长.

     

     

    题组三 利用空间向量的数量积证明垂直

    9.(多选)()已知长方体ABCD-A1B1C1D1,则下列向量的数量积可以为0的是(  )

    A.· B.·

    C.· D.·

    10.(2020四川广元中学高二上期中,)如图所示,在四棱锥P-ABCD,PA底面ABCD,ABAD,ACCD,ABC=60°,PA=AB=BC,EPC的中点.证明:

    (1)CDAE;

    (2)PD平面ABE.


    答案全解全析

    基础过关练

    1.D 是向量模的计算公式,命题正确;是向量数乘运算的结合律,命题正确;a·(b+c)=a·b+a·c=b·a+c·a=(b+c)·a,命题正确;a2b与向量b共线,b2a与向量a共线,命题不正确.故选D.

    2.C 由题意得,·=(+)·=·(·+·)=×2×a×a×cos 60°=a2.

    3.B 由题意得a·(b+c)=a·b+a·c=0.

    4.B ab的夹角为θ.(2a-b)·b=02a·b=b2,2|a||b|cos θ=|b|2=|a|·|b|,cos θ=,θ=60°.

    5.D ab的夹角为θ.a+b+c=0,a+b=-c,两边平方,a2+2a·b+b2=c2,所以4+2×2×3cos θ+9=16,解得cos θ=,故选D.

    6.A 设正方体的棱长为1,=-,

    ·=·(-)=-·=-1,

    cos<,>===-,

    异面直线ACBC1所成角的大小为.

    易错警示 向量夹角的取值范围是[0,π],而异面直线所成的角的取值范围是,因此利用数量积求异面直线所成角时,要注意角之间的关系,<a,b>,它们相等;<a,b>,它们互补.异面直线所成的角的余弦值一定是非负的.

    7.答案 (-1-,-1+)

    解析 abλa-2b的夹角为钝角,(ab)·a-2b)<0,ab2ba,

    λ2+2λ-2<0-,解得-1-<λ<-1+.

    8.B (a+3b)2=a2+6a·b+9b2=1+6×1×1×+9=13,|a+3b|=,故选B.

    9.A ||2=(++)2=||2+||2+||2+2·+2·+2·=1+4+9+2+3+6=25,||=5,故选A.

    10.答案 12

    解析 因为ACAB,BDAB,所以·=0,·=0.又因为二面角α-l-β的平面角为120°,所以<,>=60°.所以||2=(++)2=||2+||2+||2+2·+2·+2·=36+36+36+36=144,所以||=12.

    11.B 由已知得m·a=0,m·b=0,所以m·n=m·ab)=λm·am·b=0,mn,故选B.

    12.A PA平面ABCD,及三垂线定理可知DAPB,PDAB,PACD,B,C,D选项中两向量的数量积为零,无法判断PCBD是否存在垂直关系,故数量积不一定为零.

    13.答案 -

    解析 mn,m·n=0,(a+b)·(ab)=a2+(1+λ)a·bb2=18-12(1+λ)+16λ=0,解得λ=-.

    14.证明 =a,=b,=c,由题意得|a|=|b|=|c|,=(+),

    因为=a,=(b+c),所以=(a+b+c),=c-b,

    所以·=(a+b+c)·(c-b)=(a·c-a·b)+(c2-b2)=0,

    所以OGBC.

    15.证明 因为PA平面ABCD,所以PABC,所以·=0,BCPB,所以·=0.=-,·=(-)·=·-·=0,所以ABBC,又四边形ABCD是平行四边形,所以四边形ABCD是矩形.

    能力提升练

    1.C =-,=+,

    ·=·+·-·-·=0+1-2×1×-0=2.

    易知||=,||=,

    cos<,>===,故选C.

    2.C 设正四棱锥的侧棱长与底面边长均为a.由题意知,=(+),

    ·=(·+·)=×=-a2.易得||=a,||=a,cos<,>===-,BESA所成角的余弦值为.故选C.

    3.B =a,=b,=c,|a|=|b|=|c|=2,=(a+b+c),=b+c,所以·=(a+b+c)·=×=3,||=,||=,所以cos<,>==,故选B.

    4.ABC 设正方体的棱长为1,C1M=λC1A1(0λ1),

    ·=(+)·=·+(1-λ)·=0,A正确;

    ·=(+)·=··=-λ,

    cos<,>==,

    异面直线CM,AB所成角的余弦值为,

    =(0λ1)有解,B正确;

    ·=(+)·=··=0,C正确;

    B1BC1C,CMB1B所成的角等于CMC1C所成的角,易得该角小于,

    D不正确.

    故选ABC.

    5.答案 

    解析 AB=a,=+,=++,

    ·=·+·+·+·+·+·=0+1+0+0+0+1=2,

    ||=,||=.

    =,a=(负值舍去),

    =+,=+,·=·+·+·+·=1+0+0+0=1,||=,||=,

    cos<,>===.

    6.解析 (1)证明:=-=(+)-,=-,

    所以·=·(-)

    =·-·+·-·-·+·

    =0-2+2-0-0+0=0,

    所以AEBC.

    (2)·=·

    =·+·-·

    =0+2-0

    =2,

    ||==,

    所以cos<,>===,

    即直线AEDC所成角的余弦值为.

    7.B =(++)2

    =+++2·+2·+2·

    =++

    =1+1+1

    =3,

    所以||=,故选B.

    方法总结 用数量积求两点间距离的步骤:用向量表示此距离;用已知长度和夹角的向量表示此向量;用公式a·a=|a|2,通过向量运算求|a|;|a|即为所求距离.

    8.解析 (1)MPC的中点,

    =(+).

    =,=-,

    =[+(-)],

    结合=a,=b,=c,=[b+(c-a)]=-a+b+c.

    (2)AB=AD=1,PA=2,

    |a|=|b|=1,|c|=2.

    ABAD,PAB=PAD=60°,

    a·b=0,a·c=b·c=2×1×cos 60°=1.

    (1)=-a+b+c,

    ==(a2+b2+c2-2a·b-2a·c+2b·c)

    =×(1+1+4-0-2+2)=,

    ||=,BM的长等于.

    9.ABC AA1=AD,AD1B1C,A正确;AB=AD,BD1AC,B正确;AB平面AA1D1D,ABAD1,C正确;BD1BC分别为矩形A1D1CB的对角线和边,

    两者不可能垂直,D.故选ABC.

    10.证明 (1)因为PA底面ABCD,所以PACD,所以·=0,ACCD,所以·=0,=(+),所以·=(+)·=·+·=0,所以CDAE.

    (2)PA=AB=BC=1,因为ABC=60°,AB=BC=1,所以AC=1.ACCD,所以·=(-)·=0,·=1.

    因为·=(-)·(+)=(·+·--·)=×(0+1-1-0)=0,·=(-)·=0,所以PDAE,PDAB,AEAB=A,所以PD平面ABE.

     

    相关试卷

    高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.1 空间向量及其运算课堂检测: 这是一份高中数学人教A版 (2019)选择性必修 第一册<a href="/sx/tb_c4000320_t7/?tag_id=28" target="_blank">第一章 空间向量与立体几何1.1 空间向量及其运算课堂检测</a>,共6页。

    人教A版 (2019)1.1 空间向量及其运算精品同步练习题: 这是一份人教A版 (2019)1.1 空间向量及其运算精品同步练习题,共7页。

    高中数学人教A版 (2019)选择性必修 第一册1.1 空间向量及其运算精品达标测试: 这是一份高中数学人教A版 (2019)选择性必修 第一册1.1 空间向量及其运算精品达标测试,文件包含112空间向量的数量积运算-2023-2024学年高二数学同步精品讲义人教A版2019选择性必修第一册解析版docx、112空间向量的数量积运算-2023-2024学年高二数学同步精品讲义人教A版2019选择性必修第一册原卷版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map