初中数学人教版八年级上册12.1 全等三角形练习题
展开
这是一份初中数学人教版八年级上册12.1 全等三角形练习题,共7页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
第十二章 全等三角形 单元复习与检测题 B卷(含答案) 一、选择题1、下列条件不能判定两个直角三角形全等的是( )A.两条直角边对应相等 B.斜边和一锐角对应相等C.斜边和一直角边对应相等 D.两个锐角对应相等2、如图,是上一点,交于点,,,若,,则的长是( )A.0.5 B.1 C.1.5 D.23、如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是( )A.∠B=∠E,BC=EF B.∠A=∠D,BC=EFC.∠A=∠D,∠B=∠E D.BC=EF,AC=DF4、如图,P是∠AOB平分线上一点,CD⊥OP于P,并分别交OA、OB于C D,则CD_____点P到∠AOB两边距离之和.( )A.小于 B.大于 C.等于 D.不能确定5、如图.射线OC平分∠AOB,点P在OC上,且PM⊥OA于M.PN⊥OB于N,当PM=2cm时,则PN是( ) A.1cm B.2cm C.4cm D.不确定6、如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.两处 C.三处 D.四处7、要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是( )A.边角边 B.角边角 C.边边边 D.边边角8、已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是( )A.两条边长分别为4,5,它们的夹角为βB.两个角是β,它们的夹边为4C.三条边长分别是4,5,5D.两条边长是5,一个角是β9、如图,在中,,过点B作射线BF,在射线BF上取一点E,连接AE,使得,过点C作射线BF的垂线,垂足为点D,若,,则BD的长度为( )A.7 B.6 C.4 D.210、如图,方格纸中△DEF的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则图中与△DEF全等的格点三角形最多有A.8个 B.7个C.6个 D.4个 二、填空题11、如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC=______cm.12、如图,小明用直尺和圆规作一个角等于已知角,则说明的依据是______.13、已知△ABC≌△DEF,△ABC的周长为12,则△DEF的周长为______14、如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为__cm.15、已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为_____.16、在四边形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,过点C作CE⊥AD,垂足为E, CD=4,AE=10,则四边形ABCD的周长是____________________.17、在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图.大家一起热烈地讨论交流,小英第一个得出如下结论:(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.其中正确的结论是_____.(将你认为正确结论的序号都填上)18、如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__. 三、解答题19、已知△ABC≌△DFE,∠A=100°,∠B=50°,DF=12cm,求∠E的度数及AB的长. 20、如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF. 21、如图,∠C=∠CAM=90°,AC=8,BC=4,P,Q两点分别在线段AC和射线AM上运动,且PQ=AB.若△ABC和△PQA全等,求AP的长度. 22、如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出图中相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度. 23、如图,在中,是边上的一点,,平分,交边于点,连接.(1)求证:;(2)若,,求的度数. 24、如图,△ABC为等腰三角形,AB=AC,∠D=∠E,∠BAD=∠CAE.(1)写出一对全等的三角形:△ ≌△ ;(2)证明(1)中的结论;(3)求证:点G为BC的中点. 25、已知AB=AC,D,E是BC边上的点,将△ABD绕点A旋转,得到△ACD',连接D'E (1)如图1,当∠BAC=120°,∠DAE=60°时,求证DE=D'E,(2)如图2,当DE=D'E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由. 参考答案: 一、1、D 2、B 3、B 4、B 5、B 6、D 7、B 8、D 9、B 10、A二、11、1012、SSS13、1214、1215、 3cm16、 2817、(1)(3)(4)(5).18、13三、解答题19、∠E=30°,AB=12cm.【分析】根据全等三角形性质得出∠D=∠A=100°,∠F=∠B=50°,利用三角形内角和定理即可求出∠E的度数,再根据DF=AB,即可求出AB的长.【详解】∵△ABC≌△DFE,∴∠D=∠A=100°,∠F=∠B=50°,DF=AB∴∠E=180°-100°-50°=30°,∵DF=12cm,∴AB=12cm.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键.20、证明见解析.【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC≌△EDF(AAS),推出AC=EF即可.试题解析:证明:∵AC∥EF,∴∠A=∠E.在△ABC和△DEF中,,∴△ABC≌△EDF.∴AC=EF.考点:全等三角形的判定与性质.21、4或8【解析】试题分析:分△ABC≌△PQA和△ABC≌△QPA两种情况求AP的长.试题解析:当△ABC≌△PQA时,AP=CA=8;当△ABC≌△QPA时,AP=CB=4.22、(1)见解析;(2)MN=2.1cm;HG= 2.2cm.【分析】(1)根据△EFG≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三边和三角;
(2)根据(1)中的对等关系即可得MN和HG的长度.【详解】(1)∵△EFG≌△NMH,∠F与∠M是对应角,
∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,
∴FH=GM,∠EGM=∠NHF;
(2)∵EF=NM,EF=2.1cm,
∴MN=2.1cm;
∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,
∴HG=FG-FH=HM-FH=3.3-1.1=2.2cm.23、(1)见解析;(2)【分析】(1)由角平分线定义得出,由证明即可;(2)由三角形内角和定理得出,由角平分线定义得出,在中,由三角形内角和定理即可得出答案.【详解】(1)证明:平分,,在和中,,;(2),,,平分,,在中,.【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键. 24、(1)△ABE≌△ACD.(2)详见解析.(3)详见解析.【分析】(1)结论:△ABE≌△ACD.(2)根据AAS即可证明;(3)只要证明FB=FC,可得AF垂直平分线段BC即可解决问题;【详解】(1)解:结论:△ABE≌△ACD.(2)证明:∵∠BAD=∠CAE,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD.故答案为ABE,ACD.(3)证明:∵AB=AC,∴∠ABC=∠ACB,∵△ABE≌△ACD,∴∠ABE=∠ACD,∴∠FBC=∠FCB,∴BF=CF,∵AB=AC,∴AF垂直平分线段BC,∴BG=GC,∴点G为BC的中点.【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题.25、(1)详见解析;(2)∠DAE=∠BAC,理由详见解析.【分析】(1)根据旋转的性质和全等三角形的判定定理SAS证得△DAE≌△D′AE,则由“全等三角形的对应边相等”的性质证得结论;
(2)∠DAE=∠BAC.根据旋转的性质和全等三角形的判定定理SSS证得△DAE≌△D′AE,则由“全等三角形的对应角相等”的性质推知∠DAE=∠BAC.【详解】(1)证明:如图,∵△ABD旋转得到△ACD',∴∠DAD'=∠BAC=120°,AD=AD'.∵∠DAE=60°,∴∠EAD'=∠DAD'-∠DAE=120°-60°=60°.∴∠DAE=∠D'AE,又∵AE=AE,AD=AD',∴△DAE≌△D'AE(SAS).∴DE=D'E.(2)解:∠DAE=∠BAC.理由:如图,∵△ABD旋转得到△ACD',∴∠DAD'=∠BAC,AD=AD'.∵DE=D'E,AE=AE,∴△DAE≌△D'AE(SSS).∴∠DAE=D'AE=∠DAD'.∴∠DAE=∠BAC.【点睛】本题考查的知识点是全等三角形的判定与性质及旋转的性质以及等腰三角形的性质,解题的关键是熟练的掌握全等三角形的判定与性质及旋转的性质以及等腰三角形的性质.
相关试卷
这是一份人教版八年级上册《数学》第十二章单元测试卷(全等三角形)(B卷)【内含参考答案】,共7页。
这是一份初中数学人教版八年级上册第十二章 全等三角形12.1 全等三角形精品课后作业题,共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份数学八年级上册第十二章 全等三角形综合与测试同步达标检测题,文件包含第十二章全等三角形单元检测卷B卷解析版docx、第十二章全等三角形单元检测卷B卷考试版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。