终身会员
搜索
    上传资料 赚现金

    【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第03期)(教师版含解析)

    立即下载
    加入资料篮
    【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第03期)(教师版含解析)第1页
    【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第03期)(教师版含解析)第2页
    【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第03期)(教师版含解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第03期)(教师版含解析)

    展开

    这是一份【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第03期)(教师版含解析),共34页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。


    

    一、单选题
    1.下列所述图形中,是轴对称图形但不是中心对称图形的是(  )
    A. 圆 B. 菱形 C. 平行四边形 D. 等腰三角形
    【来源】广东省2018年中考数学试题
    【答案】D

    【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2.下列图形具有两条对称轴的是(  )
    A. 等边三角形 B. 平行四边形 C. 矩形 D. 正方形
    【来源】四川省资阳市2018年中考数学试卷
    【答案】C
    【解析】【分析】根据轴对称图形及对称轴的定义,结合所给图形即可作出判断.
    【详解】A、等边三角形有3条对称轴,故本选项错误;
    B、平行四边形无对称轴,故本选项错误;
    C、矩形有2条对称轴,故本选项正确;
    D、正方形有4条对称轴,故本选项错误,
    故选C.
    【点睛】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.
    3.下列命题中真命题是(  )
    A. =()2一定成立
    B. 位似图形不可能全等
    C. 正多边形都是轴对称图形
    D. 圆锥的主视图一定是等边三角形
    【来源】广西壮族自治区贵港市2018年中考数学试卷
    【答案】C

    【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.
    4.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是(  )
    A. ﹣5 B. ﹣3 C. 3 D. 1
    【来源】广西壮族自治区贵港市2018年中考数学试卷
    【答案】D
    【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
    【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
    ∴1+m=3、1﹣n=2,
    解得:m=2、n=﹣1,
    所以m+n=2﹣1=1,
    故选D.
    【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.
    5.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是(  )

    A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12
    【来源】广西壮族自治区玉林市2018年中考数学试卷
    【答案】D

    【点睛】本题考查二次函数与x轴的交点,二次函数的性质,抛物线的旋转等知识,熟练掌握和灵活应用二次函数的相关性质以及旋转的性质是解题的关键.
    6.下列四个图形中,是轴对称图形的是(  )
    A. B. C. D.
    【来源】湖南省湘西州2018年中考数学试卷
    【答案】D
    【解析】【分析】根据轴对称图形的定义逐一进行判断即可得解.
    【详解】A、不是轴对称图形,故不符合题意;
    B、不是轴对称图形,故不符合题意;
    C、不是轴对称图形,故不符合题意;
    D、是轴对称图形,故符合题意,
    故选D.
    【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.学科&网
    7.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线(  )

    A. l1 B. l2 C. l3 D. l4
    【来源】河北省2018年中考数学试卷
    【答案】C

    【点睛】本题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
    8.下列图形既是轴对称图形,又是中心对称图形的是(  )
    A. 三角形 B. 菱形 C. 角 D. 平行四边形
    【来源】云南省2018年中考数学试卷
    【答案】B
    【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.
    【详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;
    B、菱形既是轴对称图形又是中心对称图形,故本选项正确;
    C、角是轴对称图形但不一定是中心对称图形,故本选项错误;
    D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,
    故选B.
    【点睛】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    9.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是(  )
    A. B. C. D.
    【来源】内蒙古通辽市2018年中考数学试卷
    【答案】C

    【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
    10.下列平面图形中,既是中心对称图形,又是轴对称图形的是(  )
    A. 菱形 B. 等边三角形 C. 平行四边形 D. 等腰梯形
    【来源】四川省攀枝花市2018年中考数学试题
    【答案】A
    【解析】分析:根据中心对称图形,轴对称图形的定义进行判断.
    详解:A、菱形既是中心对称图形,也是轴对称图形,故本选项正确;
    B、等边三角形不是中心对称图形,是轴对称图形,故本选项错误;
    C、平行四边形是中心对称图形,不是轴对称图形,故本选项错误;
    D、等腰梯形不是中心对称图形,是轴对称图形,故本选项错误.
    故选:A.
    点睛:本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.
    11.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为(  )

    A. 90°﹣α B. α C. 180°﹣α D. 2α
    【来源】辽宁省大连市2018年中考数学试卷
    【答案】C

    点睛:本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
    12.下列图形中,属于中心对称图形的是(  )
    A. B. C. D.
    【来源】广西壮族自治区贺州市2018年中考数学试卷
    【答案】D
    【解析】【分析】根据中心对称图形的概念进行求解即可.
    【详解】A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项正确,
    故选D.
    【点睛】本题考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.
    13.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为(  )
    A. (5,3) B. (﹣1,﹣2) C. (﹣1,﹣1) D. (0,﹣1)
    【来源】辽宁省抚顺市2018年中考数学试卷
    【答案】C

    【点睛】
    本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
    14.下列图形中,是轴对称图形的是(  )
    A. B. C. D.
    【来源】重庆市2018年中考数学试卷(b卷)
    【答案】D
    【解析】
    【分析】
    根据轴对称图形的概念:一个平面图形沿某条直线折叠,直线两旁的部分能够完全重合,那么这个平面图形就是轴对称图形,对各选项分析判断即可得解.
    【详解】
    A、不是轴对称图形,故本选项错误;
    B、不是轴对称图形,故本选项错误;
    C、不是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项正确.
    故选D.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    二、填空题
    15.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.
    【来源】黑龙江省大庆市2018年中考数学试卷
    【答案】12

    【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.
    16.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.

    【来源】吉林省长春市2018年中考数学试卷
    【答案】20

    【点睛】本题考查平移的性质,解题的关键是确定出当AE⊥BC时,四边形AEFD的周长最小.
    17.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.

    【来源】四川省达州市2018年中考数学试题
    【答案】(-2,6)
    【解析】
    分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.
    详解:连接OB1,作B1H⊥OA于H,

    由题意得,OA=6,AB=OC-2,
    则tan∠BOA=,
    ∴∠BOA=30°,
    ∴∠OBA=60°,
    由旋转的性质可知,∠B1OB=∠BOA=30°,
    ∴∠B1OH=60°,

    点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.学科&网
    18.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为_____.

    【来源】黑龙江省大庆市2018年中考数学试卷
    【答案】
    【解析】【分析】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.
    【详解】∵∠ACB=90°,AC=BC=2,
    ∴AB=2,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=,
    故答案为:.
    【点睛】本题考查了旋转的性质、扇形面积的计算,得到S阴影部分 =S扇形ABD是解题的关键.
    19.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.

    【来源】湖北省随州市2018年中考数学试卷
    【答案】

    【详解】作B′H⊥x轴于H点,连结OB,OB′,如图,
    ∵四边形OABC为菱形,
    ∴∠AOC=180°﹣∠C=60°,OB平分∠AOC,
    ∴∠AOB=30°,


    【点睛】本题考查了坐标与图形变化,旋转的性质,解直角三角形等,熟知旋转前后哪些线段或角相等是解题的关键.
    20.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.

    【来源】湖南省邵阳市2018年中考数学试卷
    【答案】
    【解析】
    【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.
    【详解】∵AB=AC,∠A=36°,

    【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.

    三、解答题
    21.如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
    (1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
    (2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
    (3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)

    【来源】贵州省贵阳市2018年中考数学试卷
    【答案】(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;
    (2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;
    (3)先判断出△AEP≌△FBP,即可得出结论.
    【详解】(1)依题意作出图形如图①所示;


    在Rt△ADE中,AD=,DE=1,
    ∴tan∠AED==,
    ∴∠AED=60°,
    ∴∠BCE=∠AED=60°,
    ∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
    ∴BE平分∠AEC;
    (3)∵BP=2CP,BC==,
    ∴CP=,BP=,
    在Rt△CEP中,tan∠CEP==,
    ∴∠CEP=30°,
    ∴∠BEP=30°,
    ∴∠AEP=90°,
    ∵CD∥AB,
    ∴∠F=∠CEP=30°,

    【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.
    22.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.
    (1)填空:∠OBC=   °;
    (2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;
    (3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?

    【来源】广东省2018年中考数学试题
    【答案】(1)60;(2);(3).

    【详解】(1)由旋转性质可知:OB=OC,∠BOC=60°,
    ∴△OBC是等边三角形,
    ∴∠OBC=60°,
    故答案为:60;
    (2)∵OB=4,∠ABO=30°,
    ∴OA=OB=2,AB=OA=2,
    ∴S△AOC=•OA•AB=×2×2=2,
    ∵△BOC是等边三角形,
    ∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,
    ∴AC==2,
    ∴OP=;
    (3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,如图,
    则NE=ON•sin60°=x,


    ②当<x≤4时,M在BC上运动,N在OB上运动,

    如图,作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),
    ∴y=×ON×MH=﹣x2+2x,
    当x=时,y取最大值,y<;
    ③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,如图,


    【点睛】本题考查了旋转变换综合题,涉及到二次函数的最值,30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,仔细分析,正确添加辅助线,分类讨论的思想思考问题是解题的关键.
    23.如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.
    (1)求证:△AEF是等边三角形;
    (2)若AB=2,求△AFD的面积.

    【来源】贵州省贵阳市2018年中考数学试卷
    【答案】(1)证明见解析;(2)S△ADF=.
    【解析】【分析】(1)先根据轴对称性质及BC∥AD证△ADE为直角三角形,由F是AD中点知AF=EF,再结合AE与AF关于AG对称知AE=AF,即可得证;
    (2)由△AEF是等边三角形且AB与AG关于AE对称、AE与AF关于AG对称知∠EAG=30°,据此由AB=2知AE=AF=DF=、AH=,从而得出答案.

    (2)记AG、EF交点为H,

    ∵△AEF是等边三角形,且AE与AF关于AG对称,
    ∴∠EAG=30°,AG⊥EF,
    ∵AB与AG关于AE对称,
    ∴∠BAE=∠GAE=30°,∠AEB=90°,
    ∵AB=2,
    ∴BE=1、DF=AF=AE=,
    则EH=AE=、AH=,
    ∴S△ADF=×.
    【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、含30°角的直角三角形,轴对称的性质,解题的关键是掌握直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质等知识点.学科&网
    24.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
    (1)画出△ABC关于x轴对称的△A1B1C1;
    (2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
    (3)在(2)的条件下,求线段BC扫过的面积(结果保留π).

    【来源】黑龙江省龙东地区2018年中考数学试卷
    【答案】(1)作图见解析;(2)作图见解析;(3)2π.

    【详解】(1)△ABC关于x轴对称的△A1B1C1如图所示;
    (2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;
    (3)BC扫过的面积=
    ==2π.

    【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.
    25.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.

    (1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;
    (2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).
    ①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.
    ②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.
    【来源】湖南省郴州市2018年中考数学试卷
    【答案】(1)证明见解析;(2)①证明见解析;②或 .

    【详解】(1)由翻折可知:∠DFP=∠DFQ,
    ∵PF∥BC,
    ∴∠DFP=∠ADF,
    ∴∠DFQ=∠ADF,
    ∴△DEF是等腰三角形;

    ②当∠F′DB=90°时,如图所示,
    ∵DF′=DF=BD,
    ∴,
    ∴tan∠DBF′=;

    当∠DBF′=90°,此时DF′是斜边,即DF′>DB,不符合题意;
    当∠DF′B=90°时,如图所示,
    ∵DF′=DF=BD,
    ∴∠DBF′=30°,
    ∴tan∠DBF′=.

    【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.
    26.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
    操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
    探究一:在旋转过程中,
    (1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;
    (2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;
    (3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为   ,其中m的取值范围是   .(直接写出结论,不必证明)
    探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:
    (1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.
    (2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.

    【来源】江苏省徐州巿2018年中考数学试卷
    【答案】探究一:(1)EP=EQ;证明见解析;(2)1:2,证明见解析;(3)EP:EQ=1:m,∴0<m≤2+;探究二:(1)当x=10时,面积最小,是50cm2;当x=10时,面积最大,是75cm2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.

    (3)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析;
    探究二:(1)设EQ=x,结合上述结论,用x表示出三角形的面积,根据x的最值求得面积的最值;
    (2)首先求得EQ和EB重合时的三角形的面积的值,再进一步分情况讨论.
    【详解】探究一:(1)连接BE,
    根据E是AC的中点和等腰直角三角形的性质,得
    BE=CE,∠PBE=∠C,
    又∠BEP=∠CEQ,
    则△BEP≌△CEQ,得EP=EQ;
    (2)作EM⊥AB,EN⊥BC于M,N,
    ∴∠EMP=∠ENC,
    ∵∠MEP+∠PEN=∠PEN+∠NEF=90°,
    ∴∠MEP=∠NEF,
    ∴△MEP∽△NEQ,
    ∴EP:EQ=EM:EN=AE:CE=1:2;

    EP与EQ满足的数量关系式为EP:EQ=1:m,
    ∴0<m≤2+;(当m>2+时,EF与BC不会相交).
    探究二:若AC=30cm,
    (1)设EQ=x,则S=x2,
    所以当x=10时,面积最小,是50cm2;
    当x=10时,面积最大,是75cm2;
    (2)当x=EB=5时,S=62.5cm2,
    故当50<S≤62.5时,这样的三角形有2个;
    当S=50或62.5<S≤75时,这样的三角形有一个.

    【点睛】本题考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定与性质,相似三角形的判定与性质等,综合性较强,正确添加辅助线,熟练运用等腰直角三角形的性质和相似三角形的判定和性质进行求解是关键.学科&网
    27.如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.
    (1)求直线l1的表达式和点P的坐标;
    (2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).
    ①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;
    ②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.

    【来源】辽宁省沈阳市2018年中考数学试卷
    【答案】(1)直线l1的表达式为y=﹣x+10,点P坐标为(8,6);(2)①t值为或;②当t=时,△PMN的面积等于18.
    【解析】【分析】(1)利用待定系数法求解析式,函数关系式联立方程求交点;
    (2)①分析矩形运动规律,找到点D和点B分别在直线l2上或在直线l1上时的情况,利用AD、AB分别可以看成图象横坐标、纵坐标之差构造方程求点A坐标,进而求出AF距离;
    ②设点A坐标,表示△PMN即可.

    (2)①如图,当点D在直线上l2时,

    ∵AD=9
    ∴点D与点A的横坐标之差为9,
    ∴将直线l1与直线l2 的解析式变形为x=20﹣2y,x=y,
    ∴y﹣(20﹣2y)=9,
    解得:y=,
    ∴x=20﹣2y=,
    则点A的坐标为:(,),
    则AF=,
    ∵点A速度为每秒个单位,
    ∴t=;
    如图,当点B在l2 直线上时,


    故t值为或;
    ②如图,

    设直线AB交l2 于点H,
    设点A横坐标为a,则点D横坐标为a+9,
    由①中方法可知:MN=,
    此时点P到MN距离为:a+9﹣8=a+1,

    【点睛】本题是代数几何综合题,涉及到待定系数法、两直线的交点坐标、勾股定理、三角形的面积等,综合性较强,熟练掌握相关知识、运用分类讨论思想以及数形结合思想是解题的关键.
    28.如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
    (1)求抛物线C1的表达式;
    (2)直接用含t的代数式表示线段MN的长;
    (3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
    (4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.

    【来源】辽宁省沈阳市2018年中考数学试卷
    【答案】(1)抛物线C1:解析式为y=x2+x﹣1;(2)MN=t2+2;(3)t的值为1或0;(4)满足条件的Q点坐标为:(0,2)、(﹣1,3)、(,)、(,)

    【详解】(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),
    ∴,解得:,
    ∴抛物线C1:解析式为y=x2+x﹣1;
    (2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M,
    ∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1,
    ∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;
    (3)共分两种情况
    ①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1),
    ∴AN=t﹣(﹣2)=t+2,
    ∵MN=t2+2,
    ∴t2+2=t+2,
    ∴t1=0(舍去),t2=1,
    ∴t=1;

    (4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:

    易得K(0,3),B、O、N三点共线,
    ∵A(﹣2,1),N(1,1),P(0,﹣1),
    ∴点K、P关于直线AN对称,
    设⊙K与y轴下方交点为Q2,则其坐标为(0,2),
    ∴Q2与点O关于直线AN对称,
    ∴Q2是满足条件∠KNQ=∠BNP,
    则NQ2延长线与⊙K交点Q1,Q1、Q2关于KN的对称点Q3、Q4也满足∠KNQ=∠BNP,
    由图形易得Q1(﹣1,3),
    设点Q3坐标为(a,b),由对称性可知Q3N=NQ1=BN=2,
    由∵⊙K半径为1,
    ∴,解得:,,
    同理,设点Q4坐标为(a,b),由对称性可知Q4N=NQ2=NO=,
    ∴,解得:,,
    ∴满足条件的Q点坐标为:(0,2)、(﹣1,3)、(,)、(,).
    【点睛】本题为代数几何综合题,考查了待定系数法、二次函数基本性质、轴对称的性质、平面内两点间的距离等,熟练掌握相关知识、灵活运用分类讨论、数形结合以及构造数学模型等数学思想是解题的关键.
    29.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.
    (1)请直接写出CM和EM的数量关系和位置关系;
    (2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
    (3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.

    【来源】辽宁省盘锦市2018年中考数学试题
    【答案】(1)CM=EM,CM⊥EM,理由见解析;(2)(1)中的结论成立,理由见解析;(3)(1)中的结论成立,理由见解析.

    详解:(1)如图1,结论:CM=EM,CM⊥EM.


    (2)如图2,连接AE,

    ∵四边形ABCD和四边形EDGF是正方形,
    ∴∠FDE=45°,∠CBD=45°,
    ∴点B、E、D在同一条直线上,
    ∵∠BCF=90°,∠BEF=90°,M为AF的中点,
    ∴CM=AF,EM=AF,

    (3)如图3,连接CF,MG,作MN⊥CD于N,

    在△EDM和△GDM中,

    ∴△EDM≌△GDM,
    ∴ME=MG,∠MED=∠MGD,
    ∵M为BF的中点,FG∥MN∥BC,
    ∴GN=NC,又MN⊥CD,
    ∴MC=MG,
    ∴MD=ME,∠MCG=∠MGC,
    ∵∠MGC+∠MGD=180°,
    ∴∠MCG+∠MED=180°,
    ∴∠CME+∠CDE=180°,
    ∵∠CDE=90°,
    ∴∠CME=90°,
    ∴(1)中的结论成立.
    点睛:本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.学科&网


    相关试卷

    【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析):

    这是一份【专项练习】中考数学试题分专题训练 专题6.3 概率(第02期)(教师版含解析),共36页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第02期)(教师版含解析):

    这是一份【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第02期)(教师版含解析),共33页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    【专项练习】中考数学试题分专题训练 专题2.1 方程(第02期)(教师版含解析):

    这是一份【专项练习】中考数学试题分专题训练 专题2.1 方程(第02期)(教师版含解析),共33页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【专项练习】中考数学试题分专题训练 专题5.1 图形的平移对称与旋转(第03期)(教师版含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map