![2021年湘教版数学九年级上册3.5《相似三角形的应用》同步练习卷(含答案)01](http://www.enxinlong.com/img-preview/2/3/12332894/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年湘教版数学九年级上册3.5《相似三角形的应用》同步练习卷(含答案)02](http://www.enxinlong.com/img-preview/2/3/12332894/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年湘教版数学九年级上册3.5《相似三角形的应用》同步练习卷(含答案)03](http://www.enxinlong.com/img-preview/2/3/12332894/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学湘教版九年级上册3.5 相似三角形的应用精品同步达标检测题
展开2021年湘教版数学九年级上册
3.5《相似三角形的应用》同步练习卷
一、选择题
1.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C处时,她的影子正好与旗杆的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )
A.6.4米 B.7米 C.8米 D.9米
2.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
3.已知如图,小明在打网球时,要使球恰好能打过网,而且落在离网5m的位置上,
则球拍击球的高度h应为( )
A.2.7m B.1.8m C.0.9m D.2.5m
4.如图所示的测量旗杆的方法,已知AB是标杆,BC表示AB在太阳光下的影子,叙述错误的是( )
A.可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高
B.只需测量出标杆和旗杆的影长就可计算出旗杆的高
C.可以利用△ABC∽△EDB , 来计算旗杆的高
D.需要测量出AB.BC和DB的长,才能计算出旗杆的高
5.如图,CD是平面镜,光线从A点出发经过CD上点E反射后照到B点,若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=4,CD=11,则tanα的值为( )
A. B. C. D.
6.根据测试距离为5m的标准视力表制作一个测试距离为3m的视力表,如果标准视力表中“E”的长a是3.6cm,那么制作出的视力表中相应“E”的长b是( )
A.1.44cm B.2.16cm C.2.4cm D.3.6cm
7.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网( )
A.7.5米处 B.8米处 C.10米处 D.15米处
8.如图,为估算学校旗杆的高度,身高1.6米的小红同学沿着旗杆在地面的影子AB由A向B走去,当她走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m,BC=8m,则旗杆的高度是( )
A.6.4m B.7m C.8m D.9m
9.如图,为了测量池塘的宽DE,在岸边找到点C,测得CD=30 m,在DC的延长线上找一点A,测得AC=5 m,过点A作AB∥DE交EC的延长线于B,测出AB=6 m,则池塘的宽DE为( )
A.25 m B.30 m C.36 m D.40 m
10.数学兴趣小组的小明想测量教学楼前的一棵树的高度.下午课外活动时他测得一根长为1m的竹竿的影长是0.8m.但当他马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图).他先测得留在墙壁上的树影高为1.2m,又测得地面的影长为2.6m,请你帮他算一下,下列哪个数字最接近树高( )m.
A.3.04 B.4.45 C.4.75 D.3.8
二、填空题
11.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上.若幻灯片到光源的距离为20 cm,到屏幕的距离为40 cm,且幻灯片中图形的高度为6 cm,则屏幕上图形的高度为 cm.
12.如图,已知零件的外径为25 mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC∶OA=1∶2,量得CD=10 mm,则零件的厚度x= mm.
13.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是________米.(平面镜的厚度忽略不计)
14.为测量池塘边两点A, B之间距离,小明设计了如下的方案:在地面取一点O,使AC、BD交于点O,且CD∥AB. 若测得OB:OD=3:2,CD=40米,则A,B两点之间距离为 米.
15.如图,路灯点O到地面的垂直距离为线段OP的长.小明站在路灯下点A处,AP=4米,他的身高AB为1.6米,同学们测得他在该路灯下的影长AC为2米,路灯到地面的距离________米.
16.如图,一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第________个.
三、解答题
17.一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC= 2.7米,CD=1.2米。你能帮他求出树高为多少米吗?
18.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.
已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,
求旗杆的高度.
19.如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.若以B,P,Q为顶点的三角形与△ABC相似,求t的值.
20.如图,一块材料的形状是锐角三角形ABC,边BC=120 mm,高AD=80 mm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?
参考答案
1.C
2.B.
3.A.
4.B.
5.A
6.B
7.C
8.C
9.C;
10.B.
11.答案为:18.
12.答案为:2.5.
13.答案为:8
14.答案为:60.
15.答案为:10.
16.答案为:5
17.解:
得AB-1.2=3,
故AB=4.2米即树高为4.2米.
18.解:由题意可得:△DEF∽△DCA,
则,
∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,
∴,解得:AC=10,
故AB=AC+BC=10+1.5=11.5(m),
答:旗杆的高度为11.5m.
19.解:由题意,得BP=5t,QC=4t,AB=10 cm,BC=8 cm.
①∵∠PBQ=∠ABC,
∴若△BPQ∽△BAC,则还需=,
即=.解得t=1;
②∵∠PBQ=∠CBA,
∴若△BPQ∽△BCA,则还需=,
即=.解得t=.
综上所述,当t=1或时,以B,P,Q为顶点的三角形与△ABC相似.
20.解:设正方形的边长为x mm,则EF=x mm,
∵AD⊥BC,AD=80 mm,
∴AK=(80-x)mm.
∵正方形EFHG内接于△ABC,∴EF∥GH.
∴△AEF∽△ABC.∴=,
即=.解得x=48.
∴这个正方形零件的边长是48 mm.
初中数学湘教版九年级上册3.5 相似三角形的应用精品同步达标检测题: 这是一份初中数学湘教版九年级上册3.5 相似三角形的应用精品同步达标检测题,共9页。试卷主要包含了5 相似三角形的应用》同步练习,张明同学的身高为1等内容,欢迎下载使用。
初中湘教版3.5 相似三角形的应用课后复习题: 这是一份初中湘教版3.5 相似三角形的应用课后复习题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中湘教版3.5 相似三角形的应用优秀练习题: 这是一份初中湘教版3.5 相似三角形的应用优秀练习题,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。