青岛版九年级上册3.4 直线与圆的位置关系授课课件ppt
展开同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?
1.切线长的定义: 经过圆外一点可以画圆的两条切线,这点与其中一个切点之间的线段的长,叫作这点到圆的切线长.
①切线是直线,不能度量.
②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.
2.切线长与切线的区别在哪里?
思考:PA为☉O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B.
OB是☉O的一条半径吗?
PB是☉O的切线吗?
(利用图形轴对称性解释)
PA、PB有何关系?
∠APO和∠BPO有何关系?
切线长定理:过圆外一点所画的圆的两条切线长相等.
PA、PB分别切☉O于A、B
切线长定理为证明线段相等、角相等提供了新的方法.
已知,如图PA、PB是☉O的两条切线,A、B为切点.求证:PA=PB,∠APO=∠BPO.
证明:∵PA切☉O于点A,∴ OA⊥PA.
∵OA=OB,OP=OP,
∴Rt△OAP≌Rt△OBP,
∴PA=PB,∠APO=∠BPO.
1.PA、PB是☉O的两条切线,A、B为切点,直线OP交☉O于点D、E,交AB于C.
(1)写出图中所有的垂直关系;
OA⊥PA,OB ⊥PB,AB ⊥OP.
(3)写出图中所有的全等三角形;
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP.
(4)写出图中所有的等腰三角形.
△ABP △AOB
(2)写出图中与∠OAC相等的角;
∠OAC=∠OBC=∠APC=∠BPC.
2.PA、PB是☉O的两条切线,A,B是切点,OA=3.
(1)若AP=4,则OP= ;
(2)若∠BPA=60 °,则OP= .
解析:连接OA、OB、OC、OD和OE.∵PA、PB是☉O的两条切线,点A、B是切点,∴PA=PB=7.∠PAO=∠PBO=90°. ∠AOB=360°-∠PAO-∠PBO-∠P=140°.
又∵DC、DA是☉O的两条切线,点C、A是切点,∴DC=DA.同理可得CE=CB.S△PDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.
切线长问题辅助线添加方法:(1)分别连接圆心和切点;(2)连接两切点;(3)连接圆心和圆外一点.
如图,PA、PB是☉O的两条切线,切点为A、B,∠P= 50 °,点C是☉O上异于A、B的点,则∠ACB= .
65 °或115 °
青岛版九年级上册3.4 直线与圆的位置关系授课课件ppt: 这是一份青岛版九年级上册3.4 直线与圆的位置关系授课课件ppt,共14页。PPT课件主要包含了学习目标,知识回顾,d>r,d=r,d<r,新知探究,新知精讲,典例精讲,课堂小结,直线l与⊙O相交等内容,欢迎下载使用。
数学青岛版3.4 直线与圆的位置关系图片ppt课件: 这是一份数学青岛版3.4 直线与圆的位置关系图片ppt课件,共60页。PPT课件主要包含了d=r,d>r,相切或相交,由此得到,这样就得到了,习题34,a>2或a<-2,a=±2,-2<a<2,解CD与⊙O相切等内容,欢迎下载使用。
数学九年级上册3.4 直线与圆的位置关系教学演示课件ppt: 这是一份数学九年级上册3.4 直线与圆的位置关系教学演示课件ppt,共13页。PPT课件主要包含了直线和圆相切,直线和圆相离,直线何时变为切线,切线的判定定理,切线判定定理的应用,探索切线性质,所以AB与CD垂直,切线的性质定理,切线的性质定理的应用,挑战自我等内容,欢迎下载使用。