人教版·重庆市北碚区等四区联考2020-2021学年度第一学期期末八年级数学试卷(含答案)
展开2020-2021学年重庆市北碚区等四区联考八年级(上)期末数学试卷
一、选择题(本大题共12小题,共36分)
1.给出下列4个说法:
①只有正数才有平方根;
②2是4的平方根;
③平方根等于它本身的数只有0;
④27的立方根是±3.其中,正确的有( )
A.①② B.①②③ C.②③ D.②③④
2.下列式子从左到右的变形属于因式分解的是( )
A.ab﹣a2=a(b﹣2a) B.x2﹣4x+1=x(x﹣4)+1
C.x+1=x(1+) D.(a+b)(a﹣b)=a2﹣b2
3.如图,点O在直线AB上,过O作射线OC,∠BOC=100°,一直角三角板的直角顶点与点O重合,边OM与OB重合,边ON在直线AB的下方.若三角板绕点O按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为( )
A.5 B.4 C.5或23 D.4或22
4.已知实数a,b为△ABC的两边,且满足﹣4b+4=0,第三边c=,则第三边c上的高的值是( )
A. B. C. D.
5.希望中学七年级四个班的学生去阳光公园义务植树,已知在每小时内,5个女生种3棵树,3个男生种5棵树,各班学生人数如图所示,则植树最多的班级是( )
A.七(1)班 B.七(2)班 C.七(3)班 D.七(4)班
6.下列计算正确的是( )
A.=2 B.=±2 C.=2 D.=±2
7.若4x2+kx+25=(2x+a)2,则k+a的值可以是( )
A.﹣25 B.﹣15 C.15 D.20
8.如图,长方形ABCD中,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为( )
A.2或8 B.或18 C.或2 D.2或18
9.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有( )个.
A.1 B.2 C.3 D.4
10.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正确的有( )
A.1个 B.2个 C.3个 D.4个
11.已知3a=5,3b=10,则3a+2b的值为( )
A.﹣50 B.50 C.500 D.﹣500
12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是( )
A.①②③④ B.①②④ C.①③④ D.②③
二、填空题(本大题共6小题,共18分)
13.如图,等边△ABC的边长为2,BD是高,延长BC到点E,使CE=CD,则DE的长为 .
14.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为 .
15.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如3⊗4=2×3﹣4=2.若x⊗y=2,且y⊗x=4,则x+y的值为 .
16.课本第78页阅读材料《从勾股定理到图形面积关系的拓展》中有如下问题:如图①分别以直角三角形的三条边为边,向形外分别作正三角形,则图中的S1,S2,S3满足的数量关系是 .现将△ABF向上翻折,如图②,已知S甲=6,S乙=5,S丙=4,则△ABC的面积是 .
17.某校为了举办“庆祝建军90周年”活动,调查了本校所有学生,调查的结果如图,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有 人.
18.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为
三、计算题(本大题共1小题,共6分)
19.(6分)计算:
(1); (2)÷(﹣2);
(3); (4).
四、解答题(本大题共7小题,共56分)
20.已知多项式A=x2+2x+n2,多项式B=2x2+4x+3n2+3.
(1)若多项式x2+2x+n2是完全平方式,则n= ;
(2)已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为多少?
(3)判断多项式A与B的大小关系并说明理由.
21.如图,AD是△ABC的高,AD垂直平分线分别交AB,AC于点E,F.
(1)求证:∠B=∠AED.
(2)若DE=1,求AB的长.
22.如图,在△ABC中,AB=AC,点D是BC的中点,连接AD,∠CBE=45°,BE分别交AC,AD于点E、F.若AB=13,BC=10,求AF的长度.
23.随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了多少名学生?
(2)将图1补充完整;
(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
24.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:
如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.
(1)连接BI、CE,求证:△ABI≌△AEC;
(2)过点B作AC的垂线,交AC于点M,交IH于点N.
①试说明四边形AMNI与正方形ABDE的面积相等;
②请直接写出图中与正方形BCFG的面积相等的四边形.
(3)由第(2)题可得:
正方形ABDE的面积+正方形BCFG的面积= 的面积,即在Rt△ABC中,AB2+BC2= .
25.请阅读下列材料:
我们可以通过以下方法求代数式x2+6x+5的最小值.
x2+6x+5=x2+2•x•3+32﹣32+5=(x+3)2﹣4,
∵(x+3)2≥0
∴当x=﹣3时,x2+6x+5有最小值﹣4.
请根据上述方法,解答下列问题:
(Ⅰ)x2+4x﹣1=x2+2•x•2+22﹣22﹣1=(x+a)2+b,则ab的值是 ;
(Ⅱ)求证:无论x取何值,代数式x2+2x+7的值都是正数;
(Ⅲ)若代数式2x2+kx+7的最小值为2,求k的值.
26.【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:
如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值
【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE.
(1)请你找出图中与OC相等的线段,并说明理由;
(2)线段OC的最大值为 .
【灵活运用】
(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.
【迁移拓展】
(4)如图③,BC=4,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.
2020-2021学年重庆市北碚区等四区联考八年级(上)期末数学试卷
参考答案与试题解析
一、选择题(本大题共12小题,共36分)
1.C.2.A.3.C.4.D.5.C.6.A.7.A.8.D.9.C.10.D.
11.C.12.A.
二、填空题(本大题共6小题,共18分)
13. 14.(x﹣6)(x+2). 15.6. 16.S1+S2=S3;7.
17.90. 18.
三、计算题(本大题共1小题,共6分)
19.解:(1)原式=
=
=﹣3;
(2)原式=3﹣16÷(﹣2)
=3+8
=11;
(3)原式=
=﹣10﹣80
=﹣90;
(4)原式=
=.
四、解答题(本大题共7小题,共56分)
20.解:(1)∵x2+2x+n2是一个完全平方式,
∴n2=1,
∴n=±1.
故答案为:1或﹣1;
(2)当n=m时m2+2m+n2=﹣1,
∴m2+2m+1+n2=0,
∴(m+1)2+n2=0,
∵(m+1)2≥0,n2≥0,
∴x=m=﹣1,n=0,
∴x=﹣m时,多项式x2+2x+n2的值为m2﹣2m+n2=3;
(3)B>A.
理由如下:B﹣A=2x2+4x+3n2+3﹣(x2+2x+n2)=x2﹣2x+2n2+3=(x+1)2+2n2+2,
∵(x+1)2≥0,2n2≥0,
∴(x+1)2+2n2+2>0,
∴B>A.
21.(1)证明:∵EF是AD的垂直平分线,
∴EA=ED,
∵EH⊥AD,
∴∠AEH=∠DEH,
∵EF⊥AD,BC⊥AD,
∴EF∥BC,
∴∠AEH=∠B,
∴∠B=∠AED;
(2)解:由(1)得:EF∥BC,
∴∠HED=∠EDB,
∵∠AEH=∠HED,∠AEH=∠B,
∴∠B=∠EDB,
∴BE=DE,
∴AB=2BE=2DE=2×1=2.
22.解:∵AB=AC,AD⊥BC,
∴BD=CD,
∵BC=10,
∴BD=5,
在Rt△ABD中,AB=13,
∴,
在Rt△BDF中,∠CBE=45°,
∴△BDF是等腰直角三角形,
∴DF=BD=5,
∴AF=AD﹣DF=12﹣5=7.
23.解:(1)130÷65%=200,
答:此次抽样调查中,共调查了200名学生;
(2)反对的人数为:200﹣130﹣50=20,
补全的条形统计图如右图所示;
(3)扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:×360°=36°;
(4)1500×=375,
答:该校1500名学生中有375名学生持“无所谓”意见.
24.(1)证明:∵四边形ABDE、四边形ACHI是正方形,
∴AB=AE,AC=AI,∠BAE=∠CAI=90°,
∴∠EAC=∠BAI,
在△ABI和△AEC中,,
∴△ABI≌△AEC(SAS);
(2)①证明:∵BM⊥AC,AI⊥AC,
∴BM∥AI,
∴四边形AMNI的面积=2△ABI的面积,
同理:正方形ABDE的面积=2△AEC的面积,
又∵△ABI≌△AEC,
∴四边形AMNI与正方形ABDE的面积相等.
②解:四边形CMNH与正方形BCFG的面积相等,理由如下:
连接BH,过H作HP⊥BC于P,如图所示:
易证△CPH≌△ABC(AAS),四边形CMNH是矩形,
∴PH=BC,
∵△BCH的面积=CH×NH=BC×PH,
∴CH×NH=BC2,
∴四边形CMNH与正方形BCFG的面积相等;
(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;
即在Rt△ABC中,AB2+BC2=AC2;
故答案为:正方形ACHI,AC2.
25.解:(Ⅰ)∵x2+4x﹣1=x2+2•x•2+22﹣22﹣1=(x+2)2﹣5=(x+a)2+b,
∴a=2,b=﹣5,
∴ab=2×(﹣5)=﹣10.
故答案是:﹣10;
(Ⅱ)证明:x2+2x+7=x2+2x+()2﹣()2+7=(x+)2+1.
∵(x+)2≥0,
∴x2+2x+7的最小值是1,
∴无论x取何值,代数式x2+2x+7的值都是正数;
(Ⅲ)2x2+kx+7=(x)2+2•x•k+(k)2﹣(k)2+7=(x+k)2﹣k2+7.
∵(x+k)2≥0,
∴(x+k)2﹣k2+7的最小值是﹣k2+7,
∴﹣k2+7=2,
解得k=±2.
26.解:(1)如图①中,结论:OC=AE,
理由:∵△ABC,△BOE都是等边三角形,
∴BC=BA,BO=BE,∠CBA=∠OBE=60°,
∴∠CBO=∠ABE,
∴△CBO≌△ABE,
∴OC=AE.
(2)在△AOE中,AE≤OE+OA,
∴当E、O、A共线,
∴AE的最大值为3,
∴OC的最大值为3.
故答案为3.
(3)如图1,连接BM,
∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)
最大值=AB+AN,
∵AN=AP=2,
∴最大值为2+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴PE=AE=,
∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,
∴P(2﹣,).
(4)如图4中,以BC为边作等边三角形△BCM,
∵∠ABD=∠CBM=60°,
∴∠ABC=∠DBM,∵AB=DB,BC=BM,
∴△ABC≌△DBM,
∴AC=MD,
∴欲求AC的最大值,只要求出DM的最大值即可,
∵BC=4=定值,∠BDC=90°,
∴点D在以BC为直径的⊙O上运动,
由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2+2 ,
∴AC的最大值为2+2.
当点A在线段BD的右侧时,同法可得AC的最小值为2﹣2.
重庆市北碚区西南大附属中学2023-2024学年九上数学期末联考模拟试题含答案: 这是一份重庆市北碚区西南大附属中学2023-2024学年九上数学期末联考模拟试题含答案,共6页。试卷主要包含了已知点P的坐标为等内容,欢迎下载使用。
+重庆市北碚区2023-2024学年九年级上学期期末调研数学试卷: 这是一份+重庆市北碚区2023-2024学年九年级上学期期末调研数学试卷,共6页。
重庆市北碚区天府中学2022-2023学年八年级下学期期末数学试卷+: 这是一份重庆市北碚区天府中学2022-2023学年八年级下学期期末数学试卷+,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。