终身会员
搜索
    上传资料 赚现金
    2021年内蒙古乌兰察布市中考数学真题 (含解析)
    立即下载
    加入资料篮
    2021年内蒙古乌兰察布市中考数学真题  (含解析)01
    2021年内蒙古乌兰察布市中考数学真题  (含解析)02
    2021年内蒙古乌兰察布市中考数学真题  (含解析)03
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年内蒙古乌兰察布市中考数学真题 (含解析)

    展开
    这是一份2021年内蒙古乌兰察布市中考数学真题 (含解析),共35页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021年内蒙古乌兰察布市中考数学试卷
    一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。
    1.据交通运输部报道,截至2020年底,全国共有城市新能源公交车46.61万辆,位居全球第一,将46.61万用科学记数法表示为4.661×10n,则n等于(  )
    A.6 B.5 C.4 D.3
    2.下列运算结果中,绝对值最大的是(  )
    A.1+(﹣4) B.(﹣1)4 C.(﹣5)﹣1 D.
    3.已知线段AB=4,在直线AB上作线段BC,使得BC=2,若D是线段AC的中点,则线段AD的长为(  )
    A.1 B.3 C.1或3 D.2或3
    4.柜子里有两双不同的鞋,如果从中随机地取出2只,那么取出的鞋是同一双的概率为(  )
    A. B. C. D.
    5.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,以点A为圆心,AC的长为半径画弧,交AB于点D,交AC于点C,以点B为圆心,AC的长为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积为(  )

    A.8﹣π B.4﹣π C.2﹣ D.1﹣
    6.若x=+1,则代数式x2﹣2x+2的值为(  )
    A.7 B.4 C.3 D.3﹣2
    7.定义新运算“⨂”,规定:a⨂b=a﹣2b.若关于x的不等式x⨂m>3的解集为x>﹣1,则m的值是(  )
    A.﹣1 B.﹣2 C.1 D.2
    8.如图,直线l1∥l2,直线l3交l1于点A,交l2于点B,过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于(  )

    A.80° B.70° C.60° D.50°
    9.下列命题正确的是(  )
    A.在函数y=﹣中,当x>0时,y随x的增大而减小
    B.若a<0,则1+a>1﹣a
    C.垂直于半径的直线是圆的切线
    D.各边相等的圆内接四边形是正方形
    10.已知二次函数y=ax2﹣bx+c(a≠0)的图象经过第一象限的点(1,﹣b),则一次函数y=bx﹣ac的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    11.如图,在△ABC中,AB=AC,△DBC和△ABC关于直线BC对称,连接AD,与BC相交于点O,过点C作CE⊥CD,垂足为C,AD相交于点E,若AD=8,BC=6,则的值为(  )

    A. B. C. D.
    12.如图,在平面直角坐标系中,矩形OABC的OA边在x轴的正半轴上,OC边在y轴的正半轴上,点B的坐标为(4,2),反比例函数y=(x>0)的图象与BC交于点D,与对角线OB交于点E,与AB交于点F,连接OD,DE,EF,DF.下列结论:
    ①sin∠DOC=cos∠BOC;②OE=BE;③S△DOE=S△BEF;④OD:DF=2:3.
    其中正确的结论有(  )

    A.4个 B.3个 C.2个 D.1个
    二、填空题:本大题共有8小题,每小题3分,共24分.请把答案填在答题卡上对应的横线上。
    13.因式分解:+ax+a=   .
    14.化简:=   .
    15.一个正数a的两个平方根是2b﹣1和b+4,则a+b的立方根为    .
    16.某人5次射击命中的环数分别为5,10,7,x,10.若这组数据的中位数为8,则这组数据的方差为    .
    17.如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为    .

    18.如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD的周长为    .

    19.如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为    .

    20.已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE的面积为    .
    三、解答题:本大题共有6小题,共60分。请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置。
    21.(8分)为了庆祝中国共产党建党100周年,某校开展了学党史知识竞赛.参加知识竞赛的学生分为甲乙两组,每组学生均为20名,赛后根据竞赛成绩得到尚不完整的统计图表(如图),已知竞赛成绩满分为100分,统计表中a,b满足b=2a.请根据所给信息,解答下列问题:
    甲组20名学生竞赛成绩统计表
    成绩(分)
    70
    80
    90
    100
    人数
    3
    a
    b
    5
    (1)求统计表中a,b的值;
    (2)小明按以下方法计算甲组20名学生竞赛成绩的平均分是:(70+80+90+100)÷4=85(分).根据所学统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果;
    (3)如果依据平均成绩确定竞赛结果,那么竞赛成绩较好的是哪个组?请说明理由.

    22.(8分)某工程队准备从A到B修建一条隧道,测量员在直线AB的同一侧选定C,D两个观测点,如图.测得AC长为km,CD长为(+)km,BD长为km,∠ACD=60°,∠CDB=135°(A、B、C、D在同一水平面内).
    (1)求A、D两点之间的距离;
    (2)求隧道AB的长度.

    23.(10分)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.
    (1)求小刚跑步的平均速度;
    (2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.
    24.(10分)如图,在锐角三角形ABC中,AD是BC边上的高,以AD为直径的⊙O交AB于点E,交AC于点F,过点F作FG⊥AB,垂足为H,交于点G,交AD于点M,连接AG,DE,DF.
    (1)求证:∠GAD+∠EDF=180°;
    (2)若∠ACB=45°,AD=4,tan∠ABC=2,求HF的长.

    25.(12分)如图,已知△ABC是等边三角形,P是△ABC内部的一点,连接BP,CP.
    (1)如图1,以BC为直径的半圆O交AB于点Q,交AC于点R,当点P在上时,连接AP,在BC边的下方作∠BCD=∠BAP,CD=AP,连接DP,求∠CPD的度数;
    (2)如图2,E是BC边上一点,且EC=3BE,当BP=CP时,连接EP并延长,交AC于点F,若AB=4BP,求证:4EF=3AB;
    (3)如图3,M是AC边上一点,当AM=2MC时,连接MP.若∠CMP=150°,AB=6a,MP=a,△ABC的面积为S1,△BCP的面积为S2,求S1﹣S2的值(用含a的代数式表示).

    26.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+4x经过坐标原点,与x轴正半轴交于点A,点M(m,n)是抛物线上一动点.
    (1)如图1,当m>0,n>0,且n=3m时,
    ①求点M的坐标;
    ②若点B(,y)在该抛物线上,连接OM,BM,C是线段BM上一动点(点C与点M,B不重合),过点C作CD∥MO,交x轴于点D,线段OD与MC是否相等?请说明理由;
    (2)如图2,该抛物线的对称轴交x轴于点K,点E(x,)在对称轴上,当m>2,n>0,且直线EM交x轴的负半轴于点F时,过点A作x轴的垂线,交直线EM于点N,G为y轴上一点,点G的坐标为(0,),连接GF.若EF+NF=2MF,求证:射线FE平分∠AFG.


    2021年内蒙古乌兰察布市中考数学试卷
    参考答案与试题解析
    一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。
    1.据交通运输部报道,截至2020年底,全国共有城市新能源公交车46.61万辆,位居全球第一,将46.61万用科学记数法表示为4.661×10n,则n等于(  )
    A.6 B.5 C.4 D.3
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数.
    【解答】解:因为46.61万=466100=4.661×105,
    所以将46.61万用科学记数法表示为4.661×10n,则n等于5.
    故选:B.
    2.下列运算结果中,绝对值最大的是(  )
    A.1+(﹣4) B.(﹣1)4 C.(﹣5)﹣1 D.
    【分析】先计算各个选项,再求计算结果绝对值,最后比较大小得出答案.
    【解答】解:因为|1+(﹣4)|=|﹣3|=3,|(﹣1)4|=|1|=1,|(﹣5)﹣1|=|﹣|=,||=|2|=2,
    且<1<2<3,
    所以绝对值最大的是选项A.
    故选:A.
    3.已知线段AB=4,在直线AB上作线段BC,使得BC=2,若D是线段AC的中点,则线段AD的长为(  )
    A.1 B.3 C.1或3 D.2或3
    【分析】根据题意可分为两种情况,①点C在线段AB上,可计算出AC的长,再由D是线段AC的中点,即可得出答案;②BC在线段AB的延长线上,可计算出AC的长,再由D是线段AC的中点,即可得出答案.
    【解答】解:根据题意分两种情况,
    ①如图1,
    ∵AB=4,BC=2,
    ∴AC=AB﹣BC=2,
    ∵D是线段AC的中点,
    ∴AD==;
    ②如图2,
    ∵AB=4,BC=2,
    ∴AC=AB+BC=6,
    ∵D是线段AC的中点,
    ∴AD==×6=3.
    ∴线段AD的长为1或3.
    故选:C.


    4.柜子里有两双不同的鞋,如果从中随机地取出2只,那么取出的鞋是同一双的概率为(  )
    A. B. C. D.
    【分析】两双不同的鞋用A、a、B、b表示,其中A、a表示同一双鞋,B、b表示同一双鞋,画树状图展示所有12种等可能的结果,找出取出的鞋是同一双的结果数,然后根据概率公式求解.
    【解答】解:两双不同的鞋用A、a、B、b表示,其中A、a表示同一双鞋,B、b表示同一双鞋,
    画树状图为:

    共有12种等可能的结果,其中取出的鞋是同一双的结果数为4,
    所以取出的鞋是同一双的概率==.
    故选:A.
    5.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,以点A为圆心,AC的长为半径画弧,交AB于点D,交AC于点C,以点B为圆心,AC的长为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积为(  )

    A.8﹣π B.4﹣π C.2﹣ D.1﹣
    【分析】先根据直角三角形中的勾股定理求得AC=1,再将求不规则的阴影部分面积转化为求规则图形的面积:S阴影部分=S△ABC﹣(S扇形EBF+S扇形DAC),将相关量代入求解即可.
    【解答】解:根据题意可知AC===1,则BE=BE=AD=AC=1,
    设∠B=n°,∠A=m°,
    ∵∠ACB=90°,
    ∴∠B+∠A=90°,即n+m=90,
    ∴S阴影部分=S△ABC﹣(S扇形EBF+S扇形DAC)=﹣()=1﹣=1﹣,
    故选:D.
    6.若x=+1,则代数式x2﹣2x+2的值为(  )
    A.7 B.4 C.3 D.3﹣2
    【分析】利用条件得到x﹣1=,两边平方得x2﹣2x=1,然后利用整体代入的方法计算.
    【解答】解:∵x=+1,
    ∴x﹣1=,
    ∴(x﹣1)2=2,即x2﹣2x+1=2,
    ∴x2﹣2x=1,
    ∴x2﹣2x+2=1+2=3.
    故选:C.
    7.定义新运算“⨂”,规定:a⨂b=a﹣2b.若关于x的不等式x⨂m>3的解集为x>﹣1,则m的值是(  )
    A.﹣1 B.﹣2 C.1 D.2
    【分析】根据定义新运算的法则得出不等式,解不等式;根据解集列方程即可.
    【解答】解∵a⊗b=a﹣2b,
    ∴x⨂m═x﹣2m.
    ∵x⨂m>3,
    ∴x﹣2m>3,
    ∴x>2m+3.
    ∵关于x的不等式x⨂m>3的解集为x>﹣1,
    ∴2m+3=﹣1,
    ∴m=﹣2.
    故选:B.
    8.如图,直线l1∥l2,直线l3交l1于点A,交l2于点B,过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于(  )

    A.80° B.70° C.60° D.50°
    【分析】由题意得,∠2=60°,由平角的定义可得∠5=70°,再根据平行线的性质即可求解.
    【解答】解:如图,

    ∵l1∥l2,
    ∴∠1+∠3=180°,
    ∵∠1+∠2+∠3=240°,
    ∴∠2=240°﹣(∠1+∠3)=60°,
    ∵∠3+∠2+∠5=180°,∠3=50°,
    ∴∠5=180°﹣∠2﹣∠3=70°,
    ∵l1∥l2,
    ∴∠4=∠5=70°,
    故选:B.
    9.下列命题正确的是(  )
    A.在函数y=﹣中,当x>0时,y随x的增大而减小
    B.若a<0,则1+a>1﹣a
    C.垂直于半径的直线是圆的切线
    D.各边相等的圆内接四边形是正方形
    【分析】利用反比例函数的性质、不等式的性质、圆的切线的判定定理及正方形的判定方法分别判断后,即可确定正确的选项.
    【解答】解:A、在函数y=﹣中k=﹣<0,当x>0时,y随x的增大而增大,故原命题错误,不符合题意;
    B、若a<0,则1+a<1﹣a,故原命题错误,不符合题意;
    C、垂直于半径且经过半径的外端的直线是圆的切线,故原命题错误,不符合题意;
    D、各边相等的圆内接四边形是正方形,正确,是真命题,符合题意,
    故选:D.
    10.已知二次函数y=ax2﹣bx+c(a≠0)的图象经过第一象限的点(1,﹣b),则一次函数y=bx﹣ac的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    【分析】根据二次函数y=ax2﹣bx+c(a≠0)的图象经过第一象限的点(1,﹣b),可以判断b<0和ac异号.再根据一次函数的性质即可求解.
    【解答】解:∵点(1,﹣b)在第一象限.
    ∴﹣b>0.
    ∴b<0.
    ∵二次函数y=ax2﹣bx+c(a≠0)的图象经过第一象限的点(1,﹣b).
    ∴﹣b=a﹣b+c.
    ∴a+c=0.
    ∵a≠0.
    ∴ac<0.
    ∴一次函数y=bx﹣ac的图象经过一、二、四象限,不经过第三象限.
    故选:C.
    11.如图,在△ABC中,AB=AC,△DBC和△ABC关于直线BC对称,连接AD,与BC相交于点O,过点C作CE⊥CD,垂足为C,AD相交于点E,若AD=8,BC=6,则的值为(  )

    A. B. C. D.
    【分析】由轴对称的性质可得AC=CD,AB=BD,可证四边形ABDC是菱形,由菱形的性质可得AD⊥BC,AO=DO=4,BO=CO=3,∠ACO=∠DCO,在Rt△BOD中,利用勾股定理可求BD的长,由锐角三角函数可求EO,AE的长,即可求解.
    【解答】解:∵△DBC和△ABC关于直线BC对称,
    ∴AC=CD,AB=BD,
    ∵AB=AC,
    ∴AC=CD=AB=BD,
    ∴四边形ABDC是菱形,
    ∴AD⊥BC,AO=DO=4,BO=CO=3,∠ACO=∠DCO,
    ∴BD===5,
    ∵CE⊥CD,
    ∴∠DCO+∠ECO=90°=∠CAO+∠ACO,
    ∴∠CAO=∠ECO,
    ∴tan∠ECO==,
    ∴,
    ∴EO=,
    ∴AE=,
    ∴==,
    故选:D.
    12.如图,在平面直角坐标系中,矩形OABC的OA边在x轴的正半轴上,OC边在y轴的正半轴上,点B的坐标为(4,2),反比例函数y=(x>0)的图象与BC交于点D,与对角线OB交于点E,与AB交于点F,连接OD,DE,EF,DF.下列结论:
    ①sin∠DOC=cos∠BOC;②OE=BE;③S△DOE=S△BEF;④OD:DF=2:3.
    其中正确的结论有(  )

    A.4个 B.3个 C.2个 D.1个
    【分析】①根据矩形的性质计算CD,OD和BC的长,利用三角函数定义可作判断;
    ②利用待定系数法可得OB的解析式,列方程组可得交点E的坐标,根据中点坐标的性质可知:E是OB的中点,可作判断;
    ③根据三角形面积公式计算△BEF和△DOE的面积,可作判断;
    ④根据勾股定理计算OD和DF的长,相比可作判断.
    【解答】解:①矩形OABC中,
    ∵B(4,2),
    ∴OA=4,OC=2,
    由勾股定理得:OB==2,
    当y=2时,2=,
    ∴x=1,
    ∴D(1,2),
    ∴CD=1,
    由勾股定理得:OD==,
    ∴sin∠DOC===,
    cos∠BOC==,
    ∴sin∠DOC=cos∠BOC,
    故①正确;
    ②设OB的解析式为:y=kx(k≠0),
    把(4,2)代入得:4k=2,
    ∴k=,
    ∴y=x,
    当x=时,x=±2,
    ∴E(2,1),
    ∴E是OB的中点,
    ∴OE=BE,
    故②正确;
    ③当x=4时,y=,
    ∴F(4,),
    ∴BF=2﹣=,
    ∴S△BEF=(4﹣2)=,
    S△DOE=﹣﹣
    =4﹣1﹣
    =,
    ∴S△DOE=S△BEF,
    故③正确;
    ④由勾股定理得:DF==,
    ∵OD=,
    ∴=,
    即OD:DF=2:3.
    故④正确;
    其中正确的结论有①②③④,共4个.
    故选:A.
    二、填空题:本大题共有8小题,每小题3分,共24分.请把答案填在答题卡上对应的横线上。
    13.因式分解:+ax+a= a(x+2)2 .
    【分析】先提公因式a,再利用完全平方公式进行因式分解即可.
    【解答】解:原式=a(x2+4x+4)=a(x+2)2,
    故答案为:a(x+2)2.
    14.化简:= 1 .
    【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.
    【解答】解:原式=•(m+2)

    =1.
    故答案为1.
    15.一个正数a的两个平方根是2b﹣1和b+4,则a+b的立方根为  2 .
    【分析】根据一个正数的两个平方根互为相反数列出方程,求解即可得出b的值,再求得两个平方根中的一个,然后平方可得a的值;将a、b的值代入计算得出a+b的值,再求其立方根即可.
    【解答】解:∵一个正数a的两个平方根是2b﹣1和b+4,
    ∴2b﹣1+b+4=0,
    ∴b=﹣1.
    ∴b+4=﹣1+4=3,
    ∴a=9.
    ∴a+b=9+(﹣1)=8,
    ∵8的立方根为2,
    ∴a+b的立方根为2.
    故答案为:2.
    16.某人5次射击命中的环数分别为5,10,7,x,10.若这组数据的中位数为8,则这组数据的方差为  3.6 .
    【分析】根据题意,由中位数的定义可得x的值,计算出这组数据的平均数,再根据方差计算公式列式计算即可.
    【解答】解:根据题意,数据5,10,7,x,10的中位数为8,
    则有x=8,
    这组数据的平均数为(5+10+7+8+10)=8,
    则这组数据的方差S2=[5﹣8)2+(10﹣8)2+(7﹣8)2+(8﹣8)2+(10﹣8)2]=3.6,
    故答案为:3.6.
    17.如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为   .

    【分析】由∠ACB=90°,BD⊥CD,MN⊥CB得AC∥MN∥BD,从而得△MAC∽MBD,△CMN∽CDB,由相似比,得到MN的长度.
    【解答】解:∵∠ACB=90°,BD⊥CD,MN⊥CB,
    ∴AC∥MN∥BD,∠CNM=∠CBD,
    ∴∠MAC=∠MBD,∠MCA=∠MDB=∠CMN,
    ∴△MAC∽MBD,△CMN∽CDB,
    ∴,,
    ∴,
    ∴,
    ∴MN=.
    故答案为:.
    18.如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD的周长为  24+6 .

    【分析】连接OE,过点C作CF⊥AD交AD于点F,利用平行四边形的性质和切线的性质证明四边形OECF为矩形,利用勾股定理求得OC,进而求得平行四边形的周长.
    【解答】解:连接OE,过点C作CF⊥AD交AD于点F,

    ∵四边形ABCD为平行四边形,
    ∴AB=CD,AD=BC,AD∥BC,
    ∴∠EOD+∠OEC=180°,
    ∵⊙O与BC相切于点E,
    ∴OE⊥BC,
    ∴∠OEC=90°
    ∴∠EOD=90°,
    ∵CF⊥AD,
    ∴∠CFO=90°,
    ∴四边形OECF为矩形,
    ∴FC=OE,
    ∵AD为直径,AD=12,
    ∴FC=OE=OD=AD=6,
    ∵OC=AB,CF⊥AD,
    ∴OF=OD=3,
    在Rt△OFC中,由勾股定理得,
    OC2=OF2+FC2=32+62=45,
    ∴AB=OC=3,
    ∴▱ABCD的周长为12+12+3+3=24+6,
    故答案为:24+6.
    19.如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为  22.5° .

    【分析】连接AE,根据SAS证△ADE≌△CDE,得出AE=CE=EF,再证△AEF为等腰直角三角形,得出∠AFB=67.5°,即可求出∠BAF的度数.
    【解答】解:如右图,连接AE,
    ∵BD为正方形ABCD的对角线,
    ∴∠BDC=45°,
    ∵DE=DC=AD,
    ∴∠DEC=∠DCE==67.5°,
    ∵∠DCB=90°,
    ∴∠BCE=90°﹣∠DCE=90°﹣67.5°=22.5°,
    ∵EF=EC,
    ∴∠EFC=180°﹣∠EFC﹣∠ECF=180°﹣22.5°﹣22.5°=135°,
    ∵∠BEC=180°﹣∠DEC=180°﹣67.5°=112.5°,
    ∴∠BEF=135°﹣112.5°=22.5°,
    ∵AD=DE,∠ADE=45°,
    ∴∠AED==67.5°,
    ∴∠BEF+∠AED=22.5°+67.5°=90°,
    ∴∠AEF=180°﹣90°=90°,
    在△ADE和△EDC中,

    ∴△ADE≌△EDC(SAS),
    ∴AE=EC,
    ∴AE=EF,
    即△AEF为等腰直角三角形,
    ∴∠AFE=45°,
    ∴∠AFB=∠AFE+∠BFE=45°+22.5°=67.5°,
    ∵∠ABF=90°,
    ∴∠BAF=90°﹣∠AFB=90°﹣67.5°=22.5°,
    故答案为:22.5°.

    20.已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE的面积为  4 .
    【分析】解方程x2﹣2x﹣3=0得A(﹣1,0),B(3,0),则抛物线的对称轴为直线x=1,再确定C(0,﹣3),D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,利用两点之间线段最短可判断此时BE+DE的值最小,接着利用待定系数法求出直线AD的解析式为y=x+1,则F(0,1),然后根据三角形面积公式计算.
    【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
    抛物线的对称轴为直线x=1,
    当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3),
    当x=4时,y=x2﹣2x﹣3=5,则D(4,5),
    连接AD交直线x=1于E,交y轴于F点,如图,
    ∵BE+DE=EA+DE=AD,
    ∴此时BE+DE的值最小,
    设直线AD的解析式为y=kx+b,
    把A(﹣1,0),D(4,5)代入得,解得,
    ∴直线AD的解析式为y=x+1,
    当x=1时,y=x+1=2,则E(1,2),
    当x=0时,y=x+1=1,则F(0,1),
    ∴S△ACE=S△ACF+S△ECF=×4×1+×4×1=4.
    故答案为4.

    三、解答题:本大题共有6小题,共60分。请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置。
    21.(8分)为了庆祝中国共产党建党100周年,某校开展了学党史知识竞赛.参加知识竞赛的学生分为甲乙两组,每组学生均为20名,赛后根据竞赛成绩得到尚不完整的统计图表(如图),已知竞赛成绩满分为100分,统计表中a,b满足b=2a.请根据所给信息,解答下列问题:
    甲组20名学生竞赛成绩统计表
    成绩(分)
    70
    80
    90
    100
    人数
    3
    a
    b
    5
    (1)求统计表中a,b的值;
    (2)小明按以下方法计算甲组20名学生竞赛成绩的平均分是:(70+80+90+100)÷4=85(分).根据所学统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果;
    (3)如果依据平均成绩确定竞赛结果,那么竞赛成绩较好的是哪个组?请说明理由.

    【分析】(1)根据每组学生均为20名求出a,b的和,由b=2a即可求解;
    (2)小明的计算不正确,根据加权平均数的计算方法可以解答本题;
    (3)计算乙组20名学生竞赛成绩的平均分,比较即可得出答案.
    【解答】解:(1)∵每组学生均为20名,
    ∴a+b=20﹣3﹣5=12(名),
    ∵b=2a,
    ∴a=4,b=8;

    (2)小明的计算不正确,
    正确的计算为:=87.5(分);

    (3)竞赛成绩较好的是甲组,
    理由:乙组20名学生竞赛成绩的平均分:100×+90×+80×+70×=10+22.5+20+28=80.5(分),
    80.5<87.5,
    ∴竞赛成绩较好的是甲组.
    22.(8分)某工程队准备从A到B修建一条隧道,测量员在直线AB的同一侧选定C,D两个观测点,如图.测得AC长为km,CD长为(+)km,BD长为km,∠ACD=60°,∠CDB=135°(A、B、C、D在同一水平面内).
    (1)求A、D两点之间的距离;
    (2)求隧道AB的长度.

    【分析】(1)过A作AE⊥CD于E,由含30°角的直角三角形的性质得CE=AC=(km),AE=CE=(km),再证AE=DE,即可求解;
    (2)由(1)得AD=AE=(km),∠ADE=45°,再证∠ADB=90°,然后由勾股定理求解即可.
    【解答】解:(1)过A作AE⊥CD于E,如图所示:
    则∠AEC=∠AED=90°,
    ∵∠ACD=60°,
    ∴∠CAE=90°﹣60°=30°,
    ∴CE=AC=(km),AE=CE=(km),
    ∴DE=CD﹣CE=(+)﹣=(km),
    ∴AE=DE,
    ∴△ADE是等腰直角三角形,
    ∴AD=AE=×=(km);
    (2)由(1)得:△ADE是等腰直角三角形,
    ∴AD=AE=(km),∠ADE=45°,
    ∵∠CDB=135°,
    ∴∠ADB=135°﹣45°=90°,
    ∴AB===3(km),
    即隧道AB的长度为3km.

    23.(10分)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.
    (1)求小刚跑步的平均速度;
    (2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.
    【分析】(1)根据题意,列出分式方程即可求得小刚的跑步平均速度;
    (2)先求出小刚跑步和骑自行车的时间,加上取作业本和取自行车的时间,与上课时间20分钟作比较即可.
    【解答】解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,
    根据题意,得,
    解得:x=150,
    经检验,x=150是所列方程的根,
    所以小刚跑步的平均速度为150米/分.
    (2)由(1)得小刚跑步的平均速度为150米/分,
    则小刚跑步所用时间为1800÷150=12(分),
    骑自行车所用时间为12﹣4.5=7.5(分),
    ∵在家取作业本和取自行车共用了3分,
    ∴小刚从开始跑步回家到赶回学校需要12+7.5+3=22.5(分).
    又∵22.5>20,
    所以小刚不能在上课前赶回学校.
    24.(10分)如图,在锐角三角形ABC中,AD是BC边上的高,以AD为直径的⊙O交AB于点E,交AC于点F,过点F作FG⊥AB,垂足为H,交于点G,交AD于点M,连接AG,DE,DF.
    (1)求证:∠GAD+∠EDF=180°;
    (2)若∠ACB=45°,AD=4,tan∠ABC=2,求HF的长.

    【分析】(1)根据圆周角定理得出∠AGF=∠ADF,再根据角之间的互余关系及等量代换推出∠GAD=∠EAF,最后利用圆内接四边形的性质即可得证;
    (2)作出辅助线OF,可得:△AHM∽△FOM,△AHM∽△ADB,根据相似三角形的性质得到三角形边之间的关系,最后根据勾股定理求解即可.
    【解答】(1)证明:由题可知∠AGF=∠ADF(同弧所对的圆周角相等),
    ∵GF⊥AB,AD为圆的直径,
    ∴∠AGF+∠GAE=90°,∠ADF+∠FAD=90°,
    ∴∠GAE=∠FAD,
    ∴∠GAE+∠DAE=∠FAD+∠DAE,即∠GAD=∠EAF,
    ∵四边形AEDF是圆的内接四边形,
    ∴∠EAF+∠EDF=180°,
    ∴∠GAD+∠EDF=180°.
    (2)解:如图,

    连接OF,
    ∵AD是圆的直径,且AD是△ABC的高,GF⊥AB,
    ∴∠AED=∠ADB=∠AHM=∠AFD=90°,
    ∴△AHM∽△ADB,
    ∴=,
    ∵tan∠ABC==2,
    ∴=2,
    ∵∠ACB=45°,
    ∴∠DAC=∠ADF=∠AFO=45°,
    ∴∠AOF=90°,
    ∵在Rt△AHM与Rt△FOM中:∠AMH=∠FMO(对顶角),
    ∴△AHM∽△FOM,
    ∴==2,
    ∵AD=4,
    ∴OF=OA=2,
    ∴=2,解得OM=1,AM=OA﹣OM=1,
    设HM=x,则AH=2x,
    在△AHM中有:AH2+HM2=AM2,
    即(2x)2+x2=1,解得x1=,x2=﹣(舍去),
    ∴AH=,
    ∵OF=OA=2,
    ∴AF=2,
    在Rt△AHF中,有:AH2+HF2=AF2,
    即()2+HF2=(2)2,
    解得HF=,或HF=﹣(舍去),
    故HF的长为.
    25.(12分)如图,已知△ABC是等边三角形,P是△ABC内部的一点,连接BP,CP.
    (1)如图1,以BC为直径的半圆O交AB于点Q,交AC于点R,当点P在上时,连接AP,在BC边的下方作∠BCD=∠BAP,CD=AP,连接DP,求∠CPD的度数;
    (2)如图2,E是BC边上一点,且EC=3BE,当BP=CP时,连接EP并延长,交AC于点F,若AB=4BP,求证:4EF=3AB;
    (3)如图3,M是AC边上一点,当AM=2MC时,连接MP.若∠CMP=150°,AB=6a,MP=a,△ABC的面积为S1,△BCP的面积为S2,求S1﹣S2的值(用含a的代数式表示).

    【分析】(1)如图1,连接BD,先证明△BAP≌△BCD(SAS),进而可证明△BDP是等边三角形,由BC是⊙O的直径,可得∠BPC=90°,即可求出答案;
    (2)如图2,连接AP交BC于D,运用等边三角形性质可得BD=AB,AD=AB,由AB=4BP,可得BP=AB,运用勾股定理可得PD==AB,得出点P是AD的中点,由EC=3BE,得出点E是BD的中点,进而得出EF∥AB,△CEF∽△CBA,运用相似三角形性质即可证得结论;
    (3)如图3,过点A作AD⊥BC于点D,过点P作PE⊥BC于点E,交AC于点F,作PH⊥AC于点H,运用三角函数和勾股定理可求得AD=3a,PE=a,再利用S1﹣S2=S△ABC﹣S△BCP即可求出答案.
    【解答】解:(1)如图1,连接BD,
    ∵△ABC是等边三角形,
    ∴AB=BC,∠ABC=60°,
    在△BAP和△BCD中,

    ∴△BAP≌△BCD(SAS),
    ∴BP=BD,∠ABP=∠CBD,
    ∵∠ABP+∠PBC=60°,
    ∴∠CBD+∠PBC=60°,
    即∠PBD=60°,
    ∴△BDP是等边三角形,
    ∴∠BPD=60°,
    ∵BC是⊙O的直径,
    ∴∠BPC=90°,
    ∴∠CPD=∠BPC﹣∠BPD=90°﹣60°=30°;
    (2)如图2,连接AP交BC于D,
    ∵△ABC是等边三角形,
    ∴AB=AC=BC,∠ABC=∠ACB=60°,
    ∵BP=CP,
    ∴AD⊥BC,BD=CD=BC=AB,
    ∴AD=AB•sin∠ABC=AB•sin60°=AB,
    ∵AB=4BP,
    ∴BP=AB,
    ∴PD===AB,
    ∴PD=AD,即点P是AD的中点,
    ∵EC=3BE,
    ∴BE=BC,BC=4BE,
    ∵BD=BC,
    ∴BE=BD,即点E是BD的中点,
    ∴EP是△ABD的中位线,
    ∴EF∥AB,
    ∴△CEF∽△CBA,
    ∴===,
    ∴4EF=3AB;
    (3)如图3,过点A作AD⊥BC于点D,过点P作PE⊥BC于点E,交AC于点F,作PH⊥AC于点H,
    由(2)得:AD=AB=3a,∠ACB=60°,BC=AC=AB=6a,
    ∵∠CMP=150°,
    ∴∠PMF=180°﹣∠CMP=180°﹣150°=30°,
    ∵∠CHP=90°,
    ∴PH=PM•sin∠PMF=a•sin30°=a,
    MH=PM•cos∠PMF=a•cos30°=a,
    ∵EF⊥BC,
    ∴∠CEF=90°,
    ∴∠CFE=90°﹣∠ACB=90°﹣60°=30°,
    ∴∠CFE=∠PMF,
    ∴PF=PM=a,
    ∴FH=PF•cos∠PFH=a•cos30°=a,
    ∵AM=2MC,
    ∴CM=AC=×6a=2a,
    ∴CF=CM++MH+HF=5a,
    ∴EF=CF•sin∠ACB=5a•sin60°=a,
    ∴PE=EF﹣PF=a﹣a=a,
    ∴S1﹣S2=S△ABC﹣S△BCP=BC•AD﹣BC•PE=BC•(AD﹣PE)=×6a×(3a﹣a)=a2.



    26.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+4x经过坐标原点,与x轴正半轴交于点A,点M(m,n)是抛物线上一动点.
    (1)如图1,当m>0,n>0,且n=3m时,
    ①求点M的坐标;
    ②若点B(,y)在该抛物线上,连接OM,BM,C是线段BM上一动点(点C与点M,B不重合),过点C作CD∥MO,交x轴于点D,线段OD与MC是否相等?请说明理由;
    (2)如图2,该抛物线的对称轴交x轴于点K,点E(x,)在对称轴上,当m>2,n>0,且直线EM交x轴的负半轴于点F时,过点A作x轴的垂线,交直线EM于点N,G为y轴上一点,点G的坐标为(0,),连接GF.若EF+NF=2MF,求证:射线FE平分∠AFG.

    【分析】(1)①将点M坐标代入抛物线中得出n=﹣m2+4m,再联立n=3m,求解即可得出结论;
    ②先求出点B的坐标,进而求出直线BM的解析式,求出直线BM与x轴的交点P的坐标,判断出PO=PM,再判断出PD=PC,即可得出结论;
    (2)先判断出点M是EN的中点,进而求出点M的坐标,进而求出直线EF的解析式,进而求出OL,OF,再用勾股定理求出FG,最后用面积法求出LQ,进而判断出LQ=LO,即可得出结论.
    【解答】解(1)①∵点M(m,n)在抛物线y=﹣x2+4x上,
    ∴n=﹣m2+4m(Ⅰ),
    ∵n=3m(Ⅱ),
    联立(Ⅰ)(Ⅱ)解得,(舍去)或,
    ∴M(1,3);

    ②OD=MC,理由:
    如图1,∵点B(,y)在该抛物线y=﹣x2+4x上,
    ∴y=﹣()2+4×=,
    ∴B(,),
    由①知,M(1,3),
    ∴直线BM的解析式为y=﹣x+,
    令y=0,则﹣x+=0,
    ∴x=5,
    延长MB交x轴于P,
    ∴P(5,0),
    ∴OP=5,
    ∵M(1,3),
    ∴PM==5=OP,
    ∴∠POM=∠PMO,
    ∵CD∥MO,
    ∴∠PDC=∠POM,∠PCD=∠PMO,
    ∴∠PDC=∠PCD,
    ∴PD=PC,
    ∴PO﹣PD=PM﹣PC,
    ∴OD=MC;

    (2)∵抛物线y=﹣x2+4x=﹣(x﹣2)2+4,
    ∴E(2,),
    令y=0,则﹣x2+4x=0,
    ∴x=0或x=4,
    ∴A(4,0),
    ∵AN⊥x轴,
    ∴点N的横坐标为4,
    由图知,NF=EF+EM+MN,MF=EF+EM,
    ∵EF+NF=2MF,
    ∴EF+EF+EM+MN=2(EF+EM),
    ∴MN=EM,
    过点M作HM⊥x轴于H,
    ∴MH是梯形EKAN的中位线,
    ∴M的横坐标为3,
    ∵点M在抛物线上,
    ∴点M的纵坐标为﹣32+4×3=3,
    ∴M(3,3),
    ∵点E(2,),
    ∴直线EF的解析式为y=x+1,
    令y=0,则x+1=0,
    ∴x=﹣,
    ∴F(﹣,0),
    ∴OF=,
    ∵令y=0,则y=1,
    记直线EF与y轴的交点为L,
    ∴L(0,1),
    ∴OL=1,
    ∵G(0,),
    ∴OG=,
    ∴LG=OG﹣OL=,
    根据勾股定理得,FG===,
    过点L作LQ⊥FG于Q,
    ∴S△FLG=FG•LQ=LG•OF,
    ∴LQ===1=OL,
    ∵OL⊥FA,LQ⊥FG,
    ∴FE平分∠AFG,
    即射线FE平分∠AFG.




    相关试卷

    2023年内蒙古通辽市中考数学真题(含解析): 这是一份2023年内蒙古通辽市中考数学真题(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年内蒙古通辽市中考数学真题(含解析): 这是一份2023年内蒙古通辽市中考数学真题(含解析),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年内蒙古赤峰市中考数学真题(含解析): 这是一份2023年内蒙古赤峰市中考数学真题(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map