|课件下载
终身会员
搜索
    上传资料 赚现金
    苏科版数学八年级下册必知必会知识点总结
    立即下载
    加入资料篮
    苏科版数学八年级下册必知必会知识点总结01
    苏科版数学八年级下册必知必会知识点总结02
    苏科版数学八年级下册必知必会知识点总结03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版数学八年级下册必知必会知识点总结

    展开
    这是一份苏科版数学八年级下册必知必会知识点总结,共17页。主要包含了三象限,或第二,矩形,菱形, ,四象限等内容,欢迎下载使用。

    全面调查
    抽样调查
    收集数据
    描述数据
    整理数据
    分析数据
    得出结论

    知识概念
    抽样与样本
    1.全面调查:考察全体对象的调查方式叫做全面调查。
    2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
    3.总体:要考察的全体对象称为总体。
    4.个体:组成总体的每一个考察对象称为个体。
    5.样本:被抽取的所有个体组成一个样本。
    6.样本容量:样本中个体的数目称为样本容量。
    频率分布
    1、频率分布的意义
    在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
    2、研究频率分布的一般步骤及有关概念
    (1)研究样本的频率分布的一般步骤是:
    ①计算极差(最大值与最小值的差)
    ②决定组距与组数
    ③决定分点
    ④列频率分布表
    ⑤画频率分布直方图
    (2)频率分布的有关概念
    ①极差:最大值与最小值的差
    ②频数:落在各个小组内的数据的个数
    ③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。
    确定事件和随机事件
    1、确定事件
    必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
    不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
    2、随机事件:
    在一定条件下,可能发生也可能不放声的事件,称为随机事件。
    随机事件发生的可能性
    一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
    对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
    概率的意义与表示方法
    1、概率的意义
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
    2、事件和概率的表示方法
    一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P
    考点九、确定事件和随机事件的概率之间的关系
    1、确定事件概率
    e(2)当A是不可能发生的事件时,P(A)=0
    2、确定事件和随机事件的概率之间的关系

    不可能事件 随机事件 必然事件
    古典概型
    1、古典概型的定义
    某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型。
    2、古典概型的概率的求法
    一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    列表法求概率
    1、列表法
    用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    2、列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
    树状图法求概率 1、树状图法
    就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    2、运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
    利用频率估计概率
    1、利用频率估计概率
    在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
    2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
    3、随机数
    在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。
    分式
    1、分式定义:形如的式子叫分式,其中A、B是整式,且B中含有字母。
    (1)分式无意义:B=0时,分式无意义; B≠0时,分式有意义。
    (2)分式的值为0:A=0,B≠0时,分式的值等于0。
    (3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把分子、分母因式分解,再约去公因式。
    (4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的最终结果若是分式,一定要化为最简分式。
    (5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
    (6)最简公分母:各分式的分母所有因式的最高次幂的积。
    (7)有理式:整式和分式统称有理式。
    2、分式的基本性质:
    (1);(2)
    (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
    3、分式的运算:
    (1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
    (2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
    (3)除:除以一个分式等于乘上它的倒数式。
    (4)乘方:分式的乘方就是把分子、分母分别乘方。
    分式方程
    1、分式方程
    分母里含有未知数的方程叫做分式方程。
    2、分式方程的一般方法
    解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:
    (1)去分母,方程两边都乘以最简公分母
    (2)解所得的整式方程
    (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
    3、分式方程的特殊解法
    换元法:
    换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
    (补充)
    列方程(组)解应用题常见类型题及其等量关系;
    1、工程问题
    (1)基本工作量的关系:工作量=工作效率×工作时间
    (2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量
    (3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题
    2、行程问题
    (1)基本量之间的关系:路程=速度×时间
    (2)常见等量关系:
    相遇问题:甲走的路程+乙走的路程=全路程
    追及问题(设甲速度快):
    同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程
    同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程
    3、水中航行问题:
    顺流速度=船在静水中的速度+水流速度;
    逆流速度=船在静水中的速度–水流速度
    4、增长率问题:
    常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量×(1+增长率);
    5、数字问题:
    基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100
    列方程解应用题的常用方法
    1、译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内在联系找出等量关系。
    2、线示法:就是用同一直线上的线段表示应用题中的数量关系,然后根据线段长度的内在联系,找出等量关系。
    3、列表法:就是把已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。
    4、图示法:就是利用图表示题中的数量关系,它可以使量与量之间的关系更为直观,这种方法能帮助我们更好地理解题意。
    反比例函数
    1、反比例函数的概念
    一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
    2、反比例函数的图像
    反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
    3、反比例函数的性质
    4、反比例函数解析式的确定
    确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
    5、反比例函数中反比例系数的几何意义
    如下图,过反比例函数图像上任一点P作x轴、y轴的垂线PA,PB,则所得的矩形PMON的面积S=PAPB=。


    中心对称图形
    1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。)
    2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
    3.中心对称图形与中心对称:
    中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
    中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
    4.中心对称的性质:
    关于中心对称的两个图形是全等形。
    关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
    关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
    平行四边形
    1、平行四边形:两组对边分别平行的四边形叫做平行四边形。
    2、平行四边形性质定理1:平行四边形的对角相等。
    3、平行四边形性质定理2:平行四边形的对边相等。
    4、平行四边形性质定理2推论:夹在平行线间的平行线段相等。
    5、平行四边形性质定理3:平行四边形的对角线互相平分。
    6、平行四边形判定定理1:一组对边平行且相等的四边形是平行四边形。
    7、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。
    8、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。
    9、平行四边形判定定理4:两组对角分别相等的四边形是平行四边形。
    说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。同时又是证明线段相等,角相等或两条直线互相平行的重要方法。
    (2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方法。
    三、矩形
    矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。因此矩形的性质是在平行四边形的基础上扩充的。
    1、矩形:有一个角是直角的平行四边形叫做矩形(通常也叫做长方形)
    2、矩形性质定理1:矩形的四个角都是直角。
    3.矩形性质定理2:矩形的对角线相等。
    4、矩形判定定理1:有三个角是直角的四边形是矩形。
    说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必定是直角。
    5、矩形判定定理2:对角线相等的平行四边形是矩形。
    说明:要判定四边形是矩形的方法是:
    法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)
    法二:先证明出是平行四边形,再证出对角线相等(这是判定定理1)
    法三:只需证出三个角都是直角。(这是判定定理2)
    四、菱形
    菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。
    1、菱形:有一组邻边相等的平行四边形叫做菱形。
    2、菱形的性质1:菱形的四条边相等。
    3、菱形的性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。
    4、菱形判定定理1:四边都相等的四边形是菱形。
    5、菱形判定定理2:对角线互相垂直的平行四边形是菱形。
    说明:要判定四边形是菱形的方法是:
    法一:先证出四边形是平行四边形,再证出有一组邻边相等。(这就是定义证明)。
    法二:先证出四边形是平行四边形,再证出对角线互相垂直。(这是判定定理2)
    法三:只需证出四边都相等。(这是判定定理1)
    (五)正方形
    正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。
    1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
    2、正方形性质定理1:正方形的四个角都是直角,四条边都相等。
    3、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
    4、正方形判定定理互:两条对角线互相垂直的矩形是正方形。
    5、正方形判定定理2:两条对角线相等的菱形是正方形。
    注意:要判定四边形是正方形的方法有
    方法一:第一步证出有一组邻边相等; 第二步证出有一个角是直角;第三步证出是平行四边形。(这是用定义证明)
    方法二:第一步证出对角线互相垂直;第二步证出是矩形。(这是判定定理1)
    方法三:第一步证出对角线相等;第二步证出是菱形。(这是判定定理2)
    六、 、中位线
    1、三角形的中位线连结三角形两边中点的线段叫做三角形的中位线。
    说明:三角形的中位线与三角形的中线不同。
    2、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
    四边形知识与题型总结
    一.本章知识要求和结构
    1. 掌握平行四边形、矩形、菱形、正方形、梯形的概念,了解它们之间的内在关系.
    (1)演变关系图:
    (2)从属关系平行四边形
    (依据演变关系图,将四边形,平行四边形,梯形,矩形,菱形,正方形,等腰梯形,直角梯形填入下面的从属关系图中,其中每一个圆代表一种图形)
    2. 探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判别方法,并能运用这些知识进行有关的证明和计算.
    3. (1)平行四边形的面积等于它的底和该底上的高的积.
    如图1, =BC·AE=CD·BF
    (2)同底(等底)同高(等高)的平行四边形面积相等.如图2, =
    4.三角形中位线定理
    定义: 叫做三角形中位线(与中线的区分);
    定理:
    作用:可以证明两条直线平行;线段的相等或倍分.
    拓展:三角形共有三条中位线,并且它们将原三角形分割成四个 的小三角形,其面积和周长分别为原三角形面积和周长的 和 ;
    (4)直角三角形的性质 定理: 直角三角形斜边上的中线
    5.正方形:(1)对角线:若正方形的边长为a,则对角线的长为;
    正方形的一条对角线上的一点到另一条对角线的两个端点的距离相等
    (3)面积:正方形的面积等于边长的平方; 等于两条对角线的乘积的一半.周长相等的四边形中, 正方形的面积最大.
    6. ※梯形的中位线
    (1)定义:连结梯形两腰中点的线段叫做梯形的中位线
    (2)梯形的中位线定理:梯形的中位线平行于两底,且等于两底和的一半.
    (3)梯形的面积S=×(上底+下底)×高=中位线×高
    7.几种特殊四边形的对角线
    ① 矩形对角线交角为60(120)时,可得:
    等边三角形和含30角直角三角形 (①图)
    ② 菱形有一个角为60时, 可得: ③ 正方形中可得:
    含30角的四个全等直角三角形 四大四小等腰直角三角形
    60
    60
    (②图) (③图)
    ④ 对角线互相垂直的梯形, ⑤ 对角线互相垂直的等腰梯形
    平移腰A
    D
    C
    B
    F
    E
    可得:双垂图 可得:等腰直角三角形


    (④图) (⑤图)
    8. 中点四边形: (顶点为各边的中点,需讨论对角线&中位线)
    (1) 顺次连结任意四边形各边中点构成的四边形是_______________
    (2) 顺次连结对角线相等的四边形的各边中点, 构成的四边形是__________
    (3) 顺次连结对角线互相垂直的四边形的各边中点构成的四边形是_______
    (4) 顺次连结平行四边形各边中点构成的四边形是_________
    顺次连结矩形各边中点构成的四边形是_________
    顺次连结菱形各边中点构成的四边形是_________
    顺次连结直角梯形各边中点构成的四边形是__________
    顺次连结等腰梯形各边中点构成的四边形是__________ 反比例函数
    k的符号
    k>0
    k<0
    图像
    y
    x

    y
    x

    性质
    ①x的取值范围是x0,
    y的取值范围是y0;
    ②当k>0时,函数图像的两个分支分别
    在第一、三象限。在每个象限内,y
    随x 的增大而减小。
    ①x的取值范围是x0,
    y的取值范围是y0;
    ②当k<0时,函数图像的两个分支分别
    在第二、四象限。在每个象限内,y
    随x 的增大而增大。
    相关其他

    湘教版数学八年级下册学期工作总结: 这是一份湘教版数学八年级下册学期工作总结,共2页。

    湘教版数学八年级下册学期教学工作总结: 这是一份湘教版数学八年级下册学期教学工作总结,共3页。

    湘教版数学八年级下册教学工作总结: 这是一份湘教版数学八年级下册教学工作总结,共3页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map