终身会员
搜索
    上传资料 赚现金
    2020-2021学年福建省福州市鼓楼区黎明中学中考一模数学试卷(含答案)
    立即下载
    加入资料篮
    2020-2021学年福建省福州市鼓楼区黎明中学中考一模数学试卷(含答案)01
    2020-2021学年福建省福州市鼓楼区黎明中学中考一模数学试卷(含答案)02
    2020-2021学年福建省福州市鼓楼区黎明中学中考一模数学试卷(含答案)03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年福建省福州市鼓楼区黎明中学中考一模数学试卷(含答案)

    展开
    这是一份2020-2021学年福建省福州市鼓楼区黎明中学中考一模数学试卷(含答案),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021年中考数学 全真模拟测试卷(一)
    时间:120分钟 满分:150分
    一、选择题(每题4分,共40分)
    1.2的绝对值是 (  )
    A.-2  B. C.2  D.± 2
    2.如图所示的几何体的主视图为 (  )

      A        B       C        D

    (第2题) (第4题) (第5题)
    3.下列四个图案中是轴对称图形的是 (  )

        A         B         C        D
    4.如图,D,E分别是△ABC的边AB,AC上的中点,若DE=5,则BC等于
    (  )
    A.6  B.8  C.10  D.12
    5.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是 (  )
    A.50°  B.60°  C.65°  D.70°
    6.一组数据20,21,22,23,23的中位数和众数分别是 (  )
    A.20,23  B.21,23
    C.21,22  D.22,23

    7.在一条数轴上有A,B两点,其中点A表示的数是2x+2,点B表示的数是
    -x2,则这两点在数轴上的位置是 (  )
    A.A在B的左边 B.A在B的右边 
    C.A,B重合 D.它们的位置关系与x的值有关
    8.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发
    齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?
    译文:甲从长安出发,5日到齐国;乙从齐国出发7日到长安.现乙先出发
    2日,甲才从长安出发.问甲经过多少日与乙相逢?设甲经过x日与乙相
    逢,可列方程为 (  )
    A.+=1 B.-=1 C.= D.+=1
    9.如图,AB是半圆的直径,C,D是半圆上的两点,∠ADC=106°,则∠CAB
    等于 (  )
    A.10°  B.14°  C.16°  D.26°

    (第9题) (第15题) (第16题)
    10.已知抛物线y=x2-1与y轴交于点A,与直线y=kx(k为任意实数)相交于
    B,C两点,则下列结论不正确的是 (  )
    A.存在实数k,使得△ABC为等腰三角形
    B.存在实数k,使得△ABC的内角中有两角分别为30°和60°
    C.任意实数k,使得△ABC都为直角三角形
    D.存在实数k,使得△ABC为等边三角形
    二、填空题(每题4分,共24分)
    11.计算:0-(-6)=______________.
    12.2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地
    球约36 000千米的地球同步轨道上,将36 000用科学记数法表示为
    ______________.
    13.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h)分别为4,3,3,5,5,6.这组数据的中位数是______________.
    14.圆锥底面圆的半径为5,母线长为6,则圆锥侧面积等于______________.
    15.如图,在矩形ABCD中,AD=4,将∠A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=______________.
    16.如图,在平面直角坐标系中,四边形ABCO为平行四边形,O(0,0),A(3,1),B(1,2),反比例函数y=(k≠0)的图象经过▱ABCO的顶点C,
    则k=________.
    三、解答题(共86分)
    17.(8分)解不等式组:并把它的解集在如图所示的数轴
    上表示出来.

    (第17题)



    18.(8分)已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交
    BC的延长线于点E,求证:AD=CE.

    (第18题)


    19.(8分)先化简,再求值:÷(x-),其中x=-2.





    20.(8分)学校计划为“我和我的祖国”演讲比赛购买奖品,已知购买3个A奖品
    和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.
    (1)求A,B两种奖品的单价;
    (2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的,请设计出最省钱的购买方案,并说明理由.





    21.(8分)如图,在四边形ABCD中,AD∥BC,AB=2a,∠ABC=60°,过
    点B的⊙O与边AB,BC分别交于E,F两点.OG⊥BC,垂足为G,OG=
    a.连接OB,OE,OF.
    (1)若BF=2a,试判断△BOF的形状,并说明理由;
    (2)若BE=BF,求证:⊙O与AD相切于点A.

    (第21题)



    22.(10分)某路段上有A,B两处相距近200 m且未设红绿灯的斑马线.为使交
    通高峰期该路段车辆与行人的通行更有序,交通部门打算在汽车平均停留
    时间较长的一处斑马线上放置移动红绿灯.图①,图②分别是交通高峰期
    来往车辆在A,B两处斑马线前停留时间的抽样统计图.根据统计图解决下
    列问题:
    (1)若某日交通高峰期共有350辆车经过A处斑马线,请估计该日停留时间为10 s~12 s的车辆数,以及这些停留时间为10 s~12 s的车辆的平均停留时间;(直接写出答案)
    (2)移动红绿灯放置在哪一处斑马线上较为合适?请说明理由.

    ① ②
       (第22题)



    23.(10分)如图,在△ABC中,∠ACB=90°,点O是BC上一点.
    (1)尺规作图:作⊙O,使⊙O与AC,AB都相切;(不写作法与证明,保留作
    图痕迹)
    (2)若⊙O与AB相切于点D,与BC的另一个交点为点E,连接CD,DE,
    求证:DB2=BC·BE.

    (第23题)



    24.(12分)如图①,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D,E分别是边BC,AC的中点,连接DE.将△CDE绕点C按逆时针方向旋转,记旋转角为α.
    (1)问题发现:
    ①当α=0°时,=______________;
    ②当α=180°时,=______________;
    (2)拓展探究:
    试判断当0°≤α<360°时,的大小有无变化?请仅就图②的情形给出证明;
    (3)问题解决:
    当△CDE绕点C逆时针旋转至A,B,E三点在同一条直线上时,求线段BD的长.
       
    ①       ②     (备用图)
    (第24题)       

    25.(14分)已知抛物线C:y=ax2-4(m-1)x+3m2-6m+2.
    (1)当a=1,m=0时,求抛物线C与x轴的交点个数;
    (2)当m=0时,判断抛物线C的顶点能否落在第四象限,并说明理由;
    (3)当m≠0时,过点(m,m2-2m+2)的抛物线C中,将其中两条抛物线的顶
    点分别记为A,B,若点A,B的横坐标分别是t,t+2,且点A在第三象限.以线段AB为直径作圆,设该圆的面积为S,求S的取值范围.
    答案
    一、1. C 2. D 3. B 4. C 5. A
    6. D 点拨:先把数据按从小到大的顺序排列;20,21,22,23,23,则正中间
    的那一个数就是中位数,即22.出现次数最多的那个数就是众数,即23.故选
    D.
    7. B 点拨:∵2x+2-(-x2)
    =x2+2x+2
    =(x+1)2+1>0,
    ∴A在B的右边.
    故选B.
    8. D
    9. C 点拨:连接BD,根据圆周角定理的推论可得∠ADB=90°,则可计算出
    ∠BDC=16°,然后根据圆周角定理的推论可得∠CAB=16°.
    10. D 点拨:由题易得A(0,-1).令x2-1=kx,
    则x2-kx-1=0.
    设B(x1,x-1),C(x2,x-1),也可以表示为B(x1,kx1),C(x2,kx2),
    ∴x1+x2=k,x1·x2=-1,
    ∴(x1-x2)2=(x1+x2)2-4x1x2=k2+4,
    x+x=(x1+x2)2-2x1x2=k2+2.
    ∵BC2=(x1-x2)2+(kx1-kx2)2=(k2+4)+k2(k2+4)=(k2+4)(k2+1)=k4+5k2+
    4,
    AC2=(x2-0)2+(x-1+1)2=x+x,
    AB2=(x1-0)2+(x-1+1)2=x+x,
    ∴AC2+AB2=x+x+x+x=k2+2+(x+x)2-2xx=k2+2+(k2+2)2-2=
    k4+5k2+4,
    ∴AC2+AB2=BC2,
    ∴无论k为何值,△ABC都是直角三角形,且∠BAC=90°.
    ∴不存在实数k,使得△ABC为等边三角形.故选D.
    二、11. 6 12. 3.6×104 13. 4.5
    14. 30π
    15. 2 点拨:由题易得△A1DB1≌△A1DC,
    ∴A1C=A1B1.根据折叠易得A1C=BC=2.
    在Rt△A1CD中,A1D=AD=4,
    ∴CD==2,
    ∴AB=2.
    16.-2 点拨:连接OB,AC,交于点P,如图.
    ∵四边形ABCO是平行四边形,
    ∴AP=CP,OP=BP.
    ∵O(0,0),B(1,2),
    ∴点P的坐标为,
    ∵A(3,1),
    ∴点C的坐标为(-2,1).
    ∵反比例函数y=(k≠0)的图象经过点C,
    ∴k=-2× 1=-2.
    故答案为-2.

    (第16题)
    三、17.解:解不等式3x-5 解不等式2(2x-1)≥3x-4,得x≥-2,
    则不等式组的解集为-2≤x<3,
    将不等式组的解集表示在数轴上如图.

    (第17题)
    18.证明:∵点O是CD的中点,
    ∴OD=CO.
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠D=∠OCE.
    在△ADO和△ECO中,

    ∴△ADO≌△ECO(ASA),
    ∴AD=CE.
    19.解:原式=÷(-)
    =÷
    =·
    =.
    当x=-2时,
    原式===.
    20.解:(1)设A奖品的单价为x元,B奖品的单价为y元,
    根据题意,得
    解得
    ∴A奖品的单价为30元,B奖品的单价为15元.
    (2)最省钱的购买方案是购买A奖品8个,购买B奖品22个.理由如下:设
    购买A奖品z个,则购买B奖品(30-z)个,由题意可知,z≥(30-z),且z≤30,
    ∴≤z≤30.
    设购买奖品的花费为W元,则
    W=30z+15(30-z)=450+15z.
    ∵15>0,
    ∴W随z的增大而增大.
    又∵z为整数,
    ∴当z=8时,W取最小值,
    此时30-z=22,
    即购买A奖品8个,购买B奖品22个时,花费最少.
    21. (1)解:△BOF为等腰直角三角形.
    理由如下:∵OG⊥BC,
    ∴BG=FG=BF=a.
    ∵OG=a,
    ∴BG=OG,FG=OG,
    ∴△BOG和△FOG都是等腰直角三角形,
    ∴∠BOG=∠FOG=45°,
    ∴∠BOF=90°.
    又∵OB=OF,
    ∴△BOF为等腰直角三角形.
    (2)证明:连接EF,
    ∵∠EBF=60°,BE=BF,
    ∴△BEF为等边三角形,
    ∴EB=EF,∴点E在线段BF的垂直平分线上.
    ∵OG垂直平分BF,
    ∴点E,O,G共线,
    即EG⊥BF.
    由题意易得∠OBG=30°,
    ∵在Rt△BOG中,OG=a,
    ∴BG=a,
    ∴BE=BF=2BG=2a.
    又∵AB=2a,
    ∴点A与点E重合.
    ∵AD∥BC,AG⊥BF,
    ∴AG⊥AD,
    ∴⊙O与AD相切于点A.
    点拨:(1)由垂径定理得到BG=FG=a,则BG=OG,FG=OG,
    ∴△BOG和△FOG都是等腰直角三角形,易得∠BOF=90°,从而可判断
    △BOF为等腰直角三角形.
    (2)连接EF,先证明△BEF为等边三角形,再证明点E,O,G共线,即
    EG⊥BF,易得BG=a,接着计算出BE=BF=2BG=2a=AB,则可判断
    点A与点E重合,然后证明AG⊥AD,从而证得⊙O与AD相切于点A.
    22.解:(1)估计该日停留时间为10s~12s的车辆数约为7,这些停留时间为10s~
    12s的车辆的平均停留时间约为11s.
    (2)依题意,车辆在A处斑马线前平均停留时间约为
    =4.72(s).
    车辆在B处斑马线前平均停留时间约为
    =6.45(s).
    ∵4.72<6.45,
    ∴移动红绿灯放置在B处斑马线上较为合适.
    23. (1)解:如图,⊙O即为所求.
    (2)证明:连接OD,如图.
    ∵AB是⊙O的切线,
    ∴OD⊥AB,
    ∴∠ODB=90°,即∠1+∠2=90°.
    ∵CE是⊙O的直径,
    ∴∠3+∠2=90°,
    ∴∠1=∠3.
    ∵OC=OD,
    ∴∠4=∠3,
    ∴∠1=∠4.
    又∵∠B=∠B,
    ∴△CDB∽△DEB,
    ∴=,
    ∴DB2=BC·BE.

    (第23题)
    24. 解:(1)① ②
    (2)当0°≤α<360°时,的大小无变化.
    证明:由题易得AC=2,
    ∴CD=BC=1,CE=AC=.
    ∵∠ECD=∠ACB,
    ∴∠ECA=∠DCB.
    又∵==,
    ∴△ECA∽△DCB,
    ∴==.
    (3)①当点E在AB的延长线上时,如图①,
    在Rt△BCE中,CE=,BC=2,
    ∴BE===1,
    ∴AE=AB+BE=5.
    ∵=,
    ∴BD==.

    ① ②
    (第24题)
    ②当点E在线段AB上时,如图②,
    在Rt△BCE中,CE=,BC=2,
    ∴BE===1,
    ∴AE=AB-BE=3.
    ∵=,
    ∴BD=,
    综上所述,线段BD的长为或.
    点拨:(1)①当α=0°时,在Rt△ABC中,由勾股定理,可求AC的长;然后
    根据点D,E分别是边BC,AC的中点,分别求出AE,BD的长,即可求出
    的值;
    ②当α=180°时,可得AB∥DE,然后根据=,可求的值;
    (2)首先判断出∠ECA=∠DCB,再根据==,判断出△ECA∽△DCB,
    然后由相似三角形的对应边成比例,可求证;
    (3)分两种情形:①当点E在AB的延长线上时,②当点E在线段AB上时,分
    别求解即可.
    25.解:(1)当a=1,m=0时,抛物线C的解析式为y=x2+4x+2.
    令y=0,得x2+4x+2=0,
    ∵Δ=42- 4× 1× 2=8>0.
    ∴抛物线C与x轴有两个交点.
    (2)抛物线C的顶点不会落在第四象限.
    理由:当m=0时,抛物线C的解析式为y=ax2+4x+2,
    ∴抛物线C的顶点坐标为.
    解法一:假设抛物线C的顶点在第四象限,
    则解得
    该不等式组无解,
    ∴假设不成立,抛物线C的顶点不会落在第四象限.
    解法二:设x=-,y=-+2,则y=2x+2,
    ∴抛物线C的顶点在直线y=2x+2上运动,而该直线不经过第四象限,
    ∴抛物线C的顶点不会落在第四象限.
    (3)将点(m,m2-2m+2)的坐标代入抛物线C:y=ax2-4(m-1)x+3m2-6m+
    2,
    得am2-4m2+4m+3m2-6m+2=m2-2m+2,
    化简,得(a-2)m2=0.
    ∵m≠0,
    ∴a-2=0,即a=2,
    ∴此时,抛物线C的解析式为y=2x2-4(m-1)x+3m2-6m+2,
    ∴顶点坐标为(m-1,m2-2m).
    当m-1=t时,m=t+1,
    ∴A(t,t2-1).
    当m-1=t+2时,m=t+3,
    ∴B(t+2,t2+4t+3).
    ∵点A在第三象限,

    ∴-1 又t+2-t=2,t2+4t+3-(t2-1)=4t+4,
    ∴AB2=22+(4t+4)2=16(t+1)2+4.
    ∵16>0,
    ∴当-1 ∴4 又S=π·=AB2.
    ∵>0,
    ∴S随AB2的增大而增大,
    ∴π


    相关试卷

    2023年福建省福州市鼓楼区黎明中学中考数学模拟试卷(6月份)(含解析): 这是一份2023年福建省福州市鼓楼区黎明中学中考数学模拟试卷(6月份)(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年福建省福州市黎明中学中考模拟数学试题(6月)(含答案): 这是一份2023年福建省福州市黎明中学中考模拟数学试题(6月)(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省福州市黎明中学2023年6月中考数学模拟考数学试卷: 这是一份福建省福州市黎明中学2023年6月中考数学模拟考数学试卷,共12页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map