数学八年级上册第六章 数据的分析综合与测试单元测试练习
展开单元测试训练卷
一、选择题(共8小题,4*8=32)
1. 某市七天的空气质量指数分别是28,45,28,45,28,30,53,这组数据的众数是( )
A.28 B.30
C.45 D.53
2. 某校在开展“爱心捐助”的活动中,九年级一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是( )
A.10 B.9
C.8 D.4
3. 今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )
A.平均数是15 B.众数是10
C.中位数是17 D.方差是eq \f(44,3)
4. 中考)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是( )
A.0B.2.5
C.3 D.5
5. 在年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数、中位数、方差依次为( )
A.28,28,1 B.28,27.5,1
C.3,2.5,5 D.3,2,5
6. 甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数x及方差s2如下表所示:
若要选出一个成绩较好且状态稳定的运动员去参赛,那么应选运动员( )
A.甲 B.乙
C.丙 D.丁
7. 甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是s甲2=1.2,s乙2=1.1,s丙2=0.6,s丁2=0.9,则射击成绩最稳定的是( )
A.甲 B.乙
C.丙 D.丁
8. 已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据a1,a2,a3,0,a4,a5的平均数和中位数是( )
A.a,a3 B.a,eq \f(a2+a3,2)
C.eq \f(5,6),eq \f(a2+a3,2) D.eq \f(5,6)a,eq \f(a3+a4,2)
二.填空题(共6小题,4*6=24)
9.样本数据-2,0,3,4,-1的中位数是_______.
10. 某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.
11. 如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋尺寸的中位数为_________ .
12. 已知样本数据x1,x2,x3,x4的方差为2,则4x1,4x2,4x3,4x4的方差是________.
13. 从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查,结果如下:
甲:3,4,5,6,8,8,8,10;
乙:4,6,6,6,8,9,12,13;
丙:3,3,4,7,9,10,11,12.
三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲__ __、乙__ __、丙__ __.
14. 已知一组数据x1,x2,x3,x4的平均数是2,则数据2x1+3,2x2+3,2x3+3,2x4+3的平均数是__ __.
三.解答题(共5小题, 44分)
15.(6分) 在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?
16.(8分) 某乡镇外出务工人员共40名,为了了解他们在一个月内的收入情况,随机抽取10名外出务工人员在某月的收入(单位:元)情况为:2500,2100,3000,2500,3000,4000,3000,2400,2400,3000.
(1)求这10名务工人员在这一个月内收入的众数、中位数;
(2)求这10名务工人员在这一个月内收入的平均数,并根据计算结果估计该乡镇所有务工人员在这一个月的总收入.
17.(8分) 某同学进行社会调查,随机调查了某个地区的20个家庭的年收入情况,并绘制了统计图(如图),请你根据统计图给出的信息回答下列问题:
(1)完成下表:
这20个家庭的年平均收入为________万元;
(2)样本中的中位数是________万元,众数是________万元;
(3)在平均数、中位数两数中,哪个更能反映这个地区家庭的年收入水平?
18.(10分) 张军和李斌两名同学报名参加了校短跑训练小组,如图记录了他们近5次百米训练中所测得的成绩.请根据图中所给的信息,解答下列问题:
(1)根据图中的信息,补全下面的表格(单位:秒):
(2)直接写出他们成绩的平均数和方差;
(3)若你是他们的教练,比较张军与李斌的成绩后,你将分别给予他们怎样的建议?
19.(12分) 4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
一、数据收集,从全校随机抽取20名学生,进行每周用于课外阅读时间的调查,数据如下(单位:min):
二、整理数据,按如下分段整理样本数据并补全表格:
三、分析数据,补全下列表格中的统计量:
四、得出结论:
①计算表格中a、b、c的数据;
②求用样本中的统计量估计该校学生每周用于课外阅读时间的等级;
③如果该校现有学生400人,估计等级为“B”的学生人数;
④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读多少本课外书.
参考答案
1-4AACC 5-8ABCD
9.0
10.15
11.24.5 cm
12.32
13.众数,平均数,中位数
14. 7
15. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为eq \f(1,12)(140+146+143+…+148)=151(分).
(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.
16. 解:(1)众数为3000,中位数是2750
(2)平均数是2790,该乡镇所有务工人员在这一个月的总收入为111600元
17. 解:(1)1;1;2;3;4;5;3;1;4.6
(2)4.2;4.3
(3)中位数更能反映这个地区家庭的年收入水平.
18. 解:(1)从上到下依次填:13.2;13.4
(2)张军成绩的平均数是13.3秒,李斌成绩的平均数是13.3秒;张军成绩的方差是0.004,李斌成绩的方差是0.02.
(3)张军的成绩虽然较稳定,但缺少较好成绩,需要通过训练使成绩更好;在两人的最好成绩中,李斌比张军的最好成绩要好,但稳定性不够,需要通过不断训练加强成绩的稳定性.
19. 解:①由已知数据知a=5,b=4,∵第10,11个数据分别为80,81,∴中位数c= eq \f(80+81,2) =80.5
②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B
③估计等级为“B”的学生有400× eq \f(8,20) =160(人)
④估计该校学生每人一年(按52周计算)平均阅读课外书 eq \f(80,320) ×52=13(本)
成绩(分)
27
28
30
人数
2
3
1
甲
乙
丙
丁
x
8
9
9
8
s2
1.2
1
1.2
1
年收入/万元
3.6
3.9
4.0
4.1
4.2
4.3
4.4
12.7
家庭个数
第1次
第2次
第3次
第4次
第5次
张军
13.3
13.4
13.3
13.3
李斌
13.2
13.1
13.5
13.3
30
60
81
50
44
110
130
146
80
100
60
80
120
140
75
81
10
30
81
92
课外阅读时间x(min)
0≤x<40
40≤x<80
80≤x<120
120≤x<160
等级
D
C
B
A
人数
3
a
8
b
平均数
中位数
众数
80
c
81
2021学年第六章 数据的分析综合与测试练习: 这是一份2021学年第六章 数据的分析综合与测试练习,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学北师大版八年级上册第六章 数据的分析综合与测试练习: 这是一份初中数学北师大版八年级上册第六章 数据的分析综合与测试练习,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2020-2021学年第六章 数据的分析综合与测试单元测试课时作业: 这是一份2020-2021学年第六章 数据的分析综合与测试单元测试课时作业,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。