年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江省大庆市2022届高三上学期第一次教学质量检测数学(文)试题含答案

    立即下载
    加入资料篮
    黑龙江省大庆市2022届高三上学期第一次教学质量检测数学(文)试题含答案第1页
    黑龙江省大庆市2022届高三上学期第一次教学质量检测数学(文)试题含答案第2页
    黑龙江省大庆市2022届高三上学期第一次教学质量检测数学(文)试题含答案第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省大庆市2022届高三上学期第一次教学质量检测数学(文)试题含答案

    展开

    这是一份黑龙江省大庆市2022届高三上学期第一次教学质量检测数学(文)试题含答案,共15页。试卷主要包含了11, 若复数,则的虚部为, 命题“,”的否定是, 已知平面向量,,且,则, 函数的最大值为等内容,欢迎下载使用。
    大庆市高三年级第一次教学质量检测试题数学(文)2021.11本试卷分选择题和非选择题两部分,满分150分,考试时间120分钟. 注意事项1.答题前,考生务必将自己的姓名、班级、考场填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案的标号;非选择题答案使用0.5毫米中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。3.请按照题号在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效。4.保持卷面及答题卡清洁,不折叠,不破损。卷(选择题  共60分)一、选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则A B.     C.   D.2. 若复数,则的虚部为A         B      C    D 3. 命题的否定是A BC D4. 某团支部随机抽取甲乙两位同学连续9青年大学习的成绩(单位:分)得到如图所示的成绩茎叶图关于9的成绩,则下列说法正确的是  A甲成绩的中位数为32     B乙成绩的极差为40 C甲乙两人成绩的众数相等                D甲成绩的平均数高于乙成绩的平均数5. 已知平面向量,且,则A.      B         C       D6. 已知等比数列的前项和,若公比,则A           B            C           D7. 函数的最大值为A            B          C.      D.8. 下列函数中,在定义域内既是奇函数又是减函数的是A     B     C    D9. 是直线,是两个不同的平面,下列命题中正确的是A,则          B ,则C,则          D,则10. 已知定义在上的奇函数满足,若时,都有,则下列结论正确的是 A图象关于直线对称   B上为减函数C图象关于点中心对称  D上为增函数11. 已知直线与圆交于两点,若为等腰直角三角形,则的值为A B. C. D. 12. 已知函数有三个不同的零点,则实数的取值范围是A.           B.           C.         D.  卷(非选择题  共90分)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须做答.第22题、第23题为选考题,考生根据要求做答.二、填空题:本大题共4小题;每小题5分,共20分.13. 抛物线的焦点坐标为,则的值为                .14. 若实数满足不等式组,则的最大值为                  .15. 锐角中,角所对边的长分别为,若,则       .16. 如图,矩形中,的中点,,将沿直线翻折成不在平面,连结的中点,则在翻折过程中,下列说法中正确的是            . 平面存在某个位置,使得当三棱锥的体积最大时,三棱锥的外接球的表面积是      三、解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列是等差数列,
    求数列的通项公式;,求数列的前项和18.(本小题满分12分)随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台. 已知经销某种商品的电商在任何一个销售周期内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元.根据往的销售经验,得到一个销售周期的市场需求量的频率分布直方图如图所示.已知某电商为下一个销售周期筹备了吨该商品. 现以(单位:吨,)表示下一个销售周期的市场需求量,(单位:万元)表示该电商下一个销售周期内经销该商品获得的利润.表示为的函数,求出该函数解析式;根据直方图估计利润不少于57万元的概率;III根据频率分布直方图,估计个销售周期的市场需求量的平均数与中位数的大小(结果保留到小数点后一位).              19.(本小题满分12分)如图,三棱柱中,侧棱底面中点,中点,的交点.求证:平面平面求点到平面的距离.    20.(本小题满分12分)   已知椭圆的离心率为分别是椭圆的左、右焦点,是椭圆上一点,且的周长是.求椭圆的方程;设直线经过椭圆的右焦点且与交于不同的两点,试问:在轴上是否存在点,使得直线与直线斜率的和为定值?若存在,请求出点的坐标;若不存在,请说明理由.21.(本小题满分12分)   已知函数时,求曲线在点处的切线与两坐标轴围成的三角形的面积;若对于任意的实数恒有,求实数的取值范围 请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为为参数),曲线的参数方程为为参数). 以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系.求曲线与曲线公共点的极坐标;若点的极坐标为,设曲线轴相交于点,点在曲线上,满足,求出点的直角坐标.23. (本小题满分10分)选修4-5:不等式选讲已知函数求不等式的解集;设函数的最小值为,若实数满足,求的最大值.      
    黑龙江省大庆市2022届高三第一次教学质量检测数学(文)试题参考答案一.二.13.       14.        15.       16.17.解:1成等差数列,设公差为,…………………………………………3…………………………………………62)由(1)可得………………8 ………………10        ………………………1218:(1)当时, 时,  所以,……………………………4分(2)根据频率分布直方图及(1)知,时,由,得,当时,由所以利润不少于万元当且仅当,........................6分于是由频率分布直方图可知市场需求量的频率为所以下一个销售周期内的利润不少于万元的概率的估计值为  ……………………8分(3)估计一个销售周期内市场需求量的平均数为(吨);………………10分由频率分布直方图易知,由于时,对应的频率为时,对应的频率为 因此一个销售周期内市场需求量的中位数应属于区间于是估计中位数应为(吨).……………………………12分19.解(1中点,中点,且几何体为三棱柱,则四边形是平行四边形平面平面平面……………………………2分四边形是平行四边形,平面平面平面……………………………4分平面平面平面…………………6分2)由(1)知平面平面到平面的距离等于到平面的距离,到平面的距离为……………………………8分且侧棱底面…………………… 10分解得……………………………11分到平面的距离为.……………………………12分        20.1)由椭圆的定义知的周长为,所以……………………………1分又因为椭圆的离心率所以,联立解得,所以……………………………………3分所求椭圆方程为.……………………………………4分2)若存在满足条件的点.当直线的斜率存在时,设……………………………………5分联立,消. ,则……………………………………6分 .................................................7……………………………………9分要使对任意实数为定值,则只有,此时,.     ………………10分当直线轴垂直时,若,也有.……………………………………11分轴上存在点,使得直线与直线的斜率的和为定值0. ………………………12分     21. 解:(1)当时,,则   因为………………………………………………2所以在点处的切线方程为,即………3,令则该切线与两坐标轴围成的三角形面积为…………………………………… 42)设,则是偶函数……………………………………5时,,所以是增函数,即是增函数,所以上是增函数,因为是偶函数,故恒成立,即符合题意…………………………… 7时,,所以是减函数,即是减函数因为所以上是减函数,因为,所以当时,,则不符合题意 ……………………………………9时,存在唯一,使得因为上是增函数,所以当时,,即上为减函数因为所以当时,,即上为减函数,因为,所以当时,,则不符合题意…………………11综上,的取值范围是  ………………………………………………………12 22、解:1)由题知,曲线消去参数得到曲线的直角坐标方程为曲线消去参数得到曲线的直角坐标方程为................2联立的直角坐标方程解得故两曲线的公共点的直角坐标为    …………………………3曲线与曲线的公共点的极坐标为     …………………………52)点的直角坐标为,点的直角坐标为假设存在点满足条件,不妨设点…………………………7因为,所以,即,且,化简得联立,得所以点(舍)             ……………………………………9即在曲线上存在点,使得…………………………10        23、解:(1)由题意,函数不等式,即不等式时,,解得    时,,解得       时,,解得          …………………………3综上可得,原不等式的解集为      …………………………52)由当且仅当,即时等号成立,所以…………………………6利用柯西不等式得………………8当且仅当时,的最大值为…………………………10

    相关试卷

    黑龙江省大庆市2023-2024学年高三上学期第一次教学质量检测数学试题:

    这是一份黑龙江省大庆市2023-2024学年高三上学期第一次教学质量检测数学试题,文件包含大庆一模数学试题答案2pdf、2024届黑龙江省大庆市高三年级第一次教学质量检测数学docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    黑龙江省大庆市2022届高三上学期第二次教学质量检测数学(文)扫描版含答案:

    这是一份黑龙江省大庆市2022届高三上学期第二次教学质量检测数学(文)扫描版含答案,共4页。

    黑龙江省大庆市2022届高三上学期第一次教学质量检测数学(理)试题含答案:

    这是一份黑龙江省大庆市2022届高三上学期第一次教学质量检测数学(理)试题含答案,共15页。试卷主要包含了11, 若复数,则的虚部为, 命题“,”的否定是, 函数的最大值为, 已知向量,下列说法正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map