![人教版八下数学 第17章 勾股定理证明方法第1页](http://www.enxinlong.com/img-preview/2/3/12394642/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八下数学 第17章 勾股定理证明方法第2页](http://www.enxinlong.com/img-preview/2/3/12394642/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八下数学 第17章 勾股定理证明方法第3页](http://www.enxinlong.com/img-preview/2/3/12394642/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版数学八年级下册全册单元知识点归纳总结
- 人教版八下数学 第16章 二次根式知识点归纳及题型总结 其他 54 次下载
- 人教版八下数学 第17章 勾股定理的整理、拓展、归纳辅导 其他 30 次下载
- 人教版八下数学 第17章 勾股定理及逆定理 其他 26 次下载
- 人教版八下数学 第18章 平行四边形创新题赏析 其他 29 次下载
- 人教版八下数学 第18章 平行四边形知识点总结 其他 38 次下载
人教版八下数学 第17章 勾股定理证明方法
展开勾股定理的证明【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即, 整理得 .【证法2】(邹元治证明)以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º.∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD是一个边长为a + b的正方形,它的面积等于.∴ . ∴ .【证法3】(赵爽证明)以a、b 为直角边(b>a), 以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD是一个边长为c的正方形,它的面积等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90º.∴ EFGH是一个边长为b―a的正方形,它的面积等于.∴ .∴ .【证法4】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于.∴ .∴ .【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则, ∴ . 【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90º,QP∥BC,∴ ∠MPC = 90º,∵ BM⊥PQ,∴ ∠BMP = 90º,∴ BCPM是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L. ∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM的面积 =.同理可证,矩形MLEB的面积 =.∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积∴ ,即 .【证法8】(利用相似三角形性质证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 在ΔADC和ΔACB中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC,∴ ΔADC ∽ ΔACB.AD∶AC = AC ∶AB,即 .同理可证,ΔCDB ∽ ΔACB,从而有 .∴ ,即 .【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c,∴ RtΔDHA ≌ RtΔBCA.∴ DH = BC = a,AH = AC = b.由作法可知, PBCA 是一个矩形,所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a. ∵ RtΔDGT ≌ RtΔBCA ,RtΔDHA ≌ RtΔBCA.∴ RtΔDGT ≌ RtΔDHA .∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,∴ DGFH是一个边长为a的正方形. ∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为 ①∵ = ,,∴ = . ②把②代入①,得= = .∴ . 【证法10】(李锐证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE.又∵ ∠BTH = ∠BEA = 90º,BT = BE = b,∴ RtΔHBT ≌ RtΔABE.∴ HT = AE = a.∴ GH = GT―HT = b―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.∵ DB = EB―ED = b―a,∠HGF = ∠BDC = 90º,∴ RtΔHGF ≌ RtΔBDC. 即 .过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌ RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 . 由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE. ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,∴ RtΔQMF ≌ RtΔARC. 即.∵ ,,,又∵ ,,,∴ ==,即 . 【证法11】(利用切割线定理证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得=== ,即,∴ . 【证法12】(利用多列米定理证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有,∵ AB = DC = c,AD = BC = a,AC = BD = b,∴ ,即 ,∴ . 【证法13】(作直角三角形的内切圆证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.∵ AE = AF,BF = BD,CD = CE,∴ = = r + r = 2r,即 ,∴ .∴ ,即 ,∵ ,∴ ,又∵ = = = = ,∴ ,∴ ,∴ , ∴ .【证法14】(利用反证法证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 假设,即假设 ,则由==可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.在ΔADC和ΔACB中,∵ ∠A = ∠A,∴ 若 AD:AC≠AC:AB,则∠ADC≠∠ACB.在ΔCDB和ΔACB中,∵ ∠B = ∠B,∴ 若BD:BC≠BC:AB,则∠CDB≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC≠90º,∠CDB≠90º.这与作法CD⊥AB矛盾. 所以,的假设不能成立.∴ . 【证法15】(辛卜松证明) 设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 ;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 =.∴ ,∴ . 【证法16】(陈杰证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).在EH = b上截取ED = a,连结DA、DC,则 AD = c.∵ EM = EH + HM = b + a , ED = a,∴ DM = EM―ED = ―a = b.又∵ ∠CMD = 90º,CM = a,∠AED = 90º, AE = b,∴ RtΔAED ≌ RtΔDMC.∴ ∠EAD = ∠MDC,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴ ∠ADC = 90º.∴ 作AB∥DC,CB∥DA,则ABCD是一个边长为c的正方形.∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,∴ ∠BAF=∠DAE.连结FB,在ΔABF和ΔADE中,∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,∴ ΔABF ≌ ΔADE.∴ ∠AFB = ∠AED = 90º,BF = DE = a.∴ 点B、F、G、H在一条直线上.在RtΔABF和RtΔBCG中,∵ AB = BC = c,BF = CG = a,∴ RtΔABF ≌ RtΔBCG.∵ , , , ,∴ ===∴ .
![英语朗读宝](http://www.enxinlong.com/img/images/ed4b79351ae3a39596034d4bbb94b742.jpg)