


所属成套资源:2021-2022学年九年级数学上学期期末测试卷(含答案)
2020-2021学年人教版四川省自贡市九年级数学上学期期末考试试卷
展开
这是一份2020-2021学年人教版四川省自贡市九年级数学上学期期末考试试卷,共6页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
自贡市2020-2021学年九年级上学期期末考试数 学 试 题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分150分.考试时间120分钟.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时.须将答案答在答题卡对应的框内,在本试题卷、草稿纸上答题无效.考试结束后,本试题卷学生自己保留,只将答题卡交回. 第Ⅰ卷 (选择题 共48分)注意事项:必须使用2B铅笔将答案标号填涂在答题卡对应题目标号的位置上,如需改动用橡皮擦擦干净,再选涂其他答案标号. 一.选择题(每小题4分,共48分)1.下列图形中,是中心对称图形的是 ( ) 2.用配方法解一元二次方程,下列变形正确的的是 ( )A. B. C. D.3.如图,,为上一点,于点,且,以点为圆心,半径为2的圆与的位置关系是 ( )A.相离B.相交C.相切D.以上三种情况均有可能 4.关于的一元二次方程有两个相等的实数根,则的值为 ( )A. B. C. D.5.某超市在“国庆黄金周”期间开展有奖促销活动,每买100元商品,可参加抽奖一次,中奖的概率为,小明这期间在该超市买商品获得六次抽奖机会,则小明 ( ) A.能中奖一次 B.能中奖二次 C.至少能中奖一次 D.中奖次数不能确定 6.若将抛物线平移后得到抛物线,下列平移方法正确的是 ( ) A.向左平移1个单位,再向上平移2个单位 B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位 D.向右平移1个单位,再向下平移2个单位7.如图是⊙的切线,以点为切点,交⊙于点,点在⊙上,连接, ;若,则的度数为 ( )A.40°B.35°C.30°D.20° 8.已知抛物线和直线在同一坐标系内的图象如图,其中正确的是( ) 9.如图,正方形内接于⊙,若随意抛出一粒石子在这个圆面上,则石子落在正方形内概率是 ( ) A. B. C. D. 10.距期末考试还有20天的时候,为鼓舞干劲,班主任老师要求班上每一位同学要给同组的其他同学写一份拼搏进取的留言,小明所在的“战无不胜”学习小组共写了30份留言,请问该学习小组共有学生 ( )A.4人 B.5人 C.6人 D.7人11.如图,为等腰直角△外一点,把绕点顺时针旋转90°到,使点在△内;已知,连接,若 ,则 =( ) A. B. C. D. 12.抛物线的顶点坐标为 ,其大致图象如图所示,下列结论:①. ;②.;③.若方程有两个根,且;则;③.若方程有四个根,则这四个根的和为4. 其中正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个 第Ⅱ卷 (非选择题 共102分) 二.填空题(本大题共6个小题,每题4分,共24分)13.儿童游乐园的“欢乐海洋球池”内共有30万个形状大小相同的各色塑料小球,某同学为了估计其中红球的个数,从中随机摸出一部分小球,统计出红球的频率为0.15,据此可以估计该球池内红球大约有 万个.14.抛物线的对称轴是 . 15.若是关于的一元二次方程,则的值为 . 16.用半径为的扇形围成一个最大的圆锥侧面,圆锥的高为,则扇形的圆心角的度数是 . 17.如图在半径为的⊙中,是直径,是弦,为的中点,与交于点;若点是的中点,则的长为 . 18.如图,将边长为4的正方形绕点按逆时针方向旋转,得到正方形,连接,在旋转角从0°到180°的整个旋转过程中,当时,△ 的面积为 . 三.解答题(共8个小题,共78分)19.(8分)解方程: 20.(8分)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片背的面朝上,洗匀.⑴.若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是 ;⑵.若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为5的概率.(请用“画树状图”或 “列表”等方法写出分析过程) 21.(8分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为60米的围网在水库中围成了如图所示的①②两块矩形区域,而且这两块矩形区域的面积相等,设的长度是米,矩形区域的面积为平方米.⑴.求与之间的函数关系式 ,并注明自变量的取值范围;⑵.取何值时,有最大值?最大值为多少? 22.(8分)如图,点是△的内心,的延长线交△ 的外接圆于.求证:. 23.(10分)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的;例如,该方程变形为,也可以实现“降次”目的,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式,请利用“降次法”解决下列问题:已知:,且,求的值. 24.(10分)如图,在△中,,点为边上一点,以为半径的⊙与边交于点,连接,且为⊙的切线.⑴.求证:;⑵.若, ⊙的半径为1,求阴影部分的面积. 25.(12分)综合与实践动手操作:利用“矩形纸片的折叠”开展数学活动,探究体会图形在矩形折叠过程中的变化及其蕴含的数学方法.如图⑴,将矩形对折,使点与点重合,点与点重合,折痕为,展平后,将矩形沿过点的直线折叠,使点的对应点 落在上,点在边上,折痕为,连接.思考探究:⑴.①.当矩形为正方形时,△为 三角形; ②.当= 时,△为等腰直角三角形. 请证明你的结论.开放拓展:⑵.如图⑵,若矩形沿过点的直线折叠,点在上,折痕为,点的对应点落在矩形内部,,连接 .①.在此过程中,点翻折到点 所走过路径长的范围是 ;②.的最小值为 . 26.(14分)在平面直角坐标系中,抛物线的顶点为.⑴.若此抛物线过点,求抛物线的解析式;⑵.在⑴的条件下,若抛物线与轴交于点,连接,为抛物线上一点,且位于线段的上方,过点作垂直于轴于点,交于点;若,求点的坐标;⑶.无论取何值,抛物线都经过定点,当直线与轴的交角为45°时,求的值.
自贡市2020-2021学年上学期九年级期末统考 数学试题考点分析及解答 一.选择题1.D 2.D 3.A 4.A 5.D 6.B 7.B 8.B 9.C 10.C 11.D 12.B 二.填空题13. . 14. .15..16.. 17..18. . 三.解答题(共8个小题,共78分)19. 解: 2分 ·····························································4分 ∴ 或 ∴.····························································8分 20.解.⑴. ; 2分 ⑵.画树状图为:··················································· 6分 共有12种等可能的结果,其中抽得的2张卡片上的数字之和为5的结果为4种;······7分所以抽得的2张卡片上的数字之和为5的概率为: . ·························8分 21.解:⑴.由题意得: ··········································1分∴,即( )········································4分 注:没有写自变量取值范围扣1分.⑵. ∵···············································7分 ∴当时,有最大值,最大值是300平方米. ··················8分 22.证:连接. 1分∵点是△的内心∴ , ·············································3分∵ ∴ ∴················································4分又 , ∴················································7分∴················································8分 23.解:∵ ∴△= ∴·························································3分 ∵ ∴ ∴·························································8分 ∵,且 ∴······················································9分 ∴原式= ····················································10分24.解:⑴.连接.·········································1分
∵为⊙的切线∴ ,则 ∴ ············································2分∵ ∴··········································3分 又 ∴ ·····························································4分∴ ∴······························································5分⑵.∵∴∴ ·····························································6分由⑴问可知 ∴ ∴ ∴ ····························································8分∴ ·····························································10分 25.解:⑴.①.填写:等边;②.填写: .······························2 分证明:①.∵矩形为正方形,由折叠可知: , ∴∴故△为等边三角形····································4分②.由折叠可知:, ∵△为等腰直角三角形∴, ∴ ∵矩形为正方形∴····························································8分 ⑵.①.填写:大于0小于 ;············································10分 ②.填写: . ·················································12分 理由: ①.本题的⑵的①问点翻折到点 所走过路径长的范围抓住主动点在边上运动,又,可知从动点是在以点为圆心,为半径的圆上,又因为点在落在矩形内部,所以是一段弧 不含端点.(见图(1)①).∵在△中, ∴ ∴ ∴∴ . 故①.填写:大于0小于 .②.当点三点共线时的值最小,而,而在∵△中,∴; 故填写:.26.解:⑴.把点代入得: ,解得: ∴.···························································3分 ⑵. 抛物线与轴交于点 设直线的解析式为 ∵,∴ 解得: ∴直线为:. ····················································5分 设 ,则 根据(即点为的中点)有∴ ,解得:(符合题意) ∴. ···························································8分⑶.先把定点找出来: 整理为:;当,即时, .故无论取何值,抛物线都经过定点.···································9分抛物线的顶点可表示为.············································10分①.当顶点在直线的右侧时,如示意图: ,则;按如图方式作垂线.∵直线与轴的交角为45°,则△为等腰直角三角形.∴又∴,解得:(舍去),.············································11分②. 当顶点在直线的左侧时,如示意图: ,则;按如图方式作垂线.∵直线与轴的交角为45°,则△为等腰直角三角形.∴又∴,解得:(舍去),.································12分 ③. 当顶点在直线的上时, ,则;∴,点与点重合,(舍去)···········································13分综上可知或. ······················································14分 、
相关试卷
这是一份四川省自贡市2023——2024学年九年级上学期期末考试数学试题,共6页。
这是一份四川省自贡市荣县留佳初级中学2022-2023学年部人教版数学九年级上学期半期试题(含答案),共3页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年四川省自贡市某校初二(下)期中考试数学试卷新人教版