还剩7页未读,
继续阅读
所属成套资源:初中数学公式表及压轴题汇总
成套系列资料,整套一键下载
- 人教版数学七年级下册知识点 其他 8 次下载
- 人教版数学八年级上册知识点 其他 7 次下载
- 人教版数学八年级下册知识点 其他 8 次下载
- 人教版数学九年级上册知识点 其他 6 次下载
- 人教版数学九年级下册知识点 其他 4 次下载
中考数学专题复习——压轴题(含答案)
展开
这是一份中考数学专题复习——压轴题(含答案),共10页。
1.已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
求该抛物线的解析式;
若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)
2. 如图,在中,,,,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于
,当点与点重合时,点停止运动.设,.
(1)求点到的距离的长;
(2)求关于的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.
A
B
C
D
E
R
P
H
Q
3在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
A
B
C
M
N
P
图 3
O
A
B
C
M
N
D
图 2
O
A
B
C
M
N
P
图 1
O
4.如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
5如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.
压轴题答案
1. 解:( 1)由已知得:解得
c=3,b=2
∴抛物线的线的解析式为
(2)由顶点坐标公式得顶点坐标为(1,4)
所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)
设对称轴与x轴的交点为F
所以四边形ABDE的面积=
=
=
=9
(3)相似
如图,BD=
BE=
DE=
所以, 即: ,所以是直角三角形
所以,且,
所以.
2 解:(1),,,.
点为中点,.
,.
,
,.
(2),.
,,
,,
即关于的函数关系式为:.
(3)存在,分三种情况:
A
B
C
D
E
R
P
H
Q
M
2
1
①当时,过点作于,则.
,,
.
,,
A
B
C
D
E
R
P
H
Q
,.
A
B
C
D
E
R
P
H
Q
②当时,,
.
③当时,则为中垂线上的点,
于是点为的中点,
.
,
A
B
C
M
N
P
图 1
O
,.
综上所述,当为或6或时,为等腰三角形.
3解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.
∴ △AMN ∽ △ABC.
∴ ,即.
∴ AN=x. ……………2分
∴ =.(0<<4) ……………3分
A
B
C
M
N
D
图 2
O
Q
(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =MN.
在Rt△ABC中,BC ==5.
由(1)知 △AMN ∽ △ABC.
∴ ,即.
∴ ,
∴ . …………………5分
过M点作MQ⊥BC 于Q,则.
在Rt△BMQ与Rt△BCA中,∠B是公共角,
∴ △BMQ∽△BCA.
∴ .
∴ ,.
∴ x=.
∴ 当x=时,⊙O与直线BC相切.…………………………………7分
A
B
C
M
N
P
图 3
O
(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.
∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC.
∴ △AMO ∽ △ABP.
∴ . AM=MB=2.
故以下分两种情况讨论:
= 1 \* GB3 ① 当0<≤2时,.
A
B
C
M
N
P
图 4
O
E
F
∴ 当=2时, ……………………………………8分
= 2 \* GB3 ② 当2<<4时,设PM,PN分别交BC于E,F.
∵ 四边形AMPN是矩形,
∴ PN∥AM,PN=AM=x.
又∵ MN∥BC,
∴ 四边形MBFN是平行四边形.
∴ FN=BM=4-x.
∴ .
又△PEF ∽ △ACB.
∴ .
∴ . ……………………………………………… 9分
=.……………………10分
当2<<4时,.
∴ 当时,满足2<<4,. ……………………11分
综上所述,当时,值最大,最大值是2. …………………………12分
4 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=,∴B(,2)
∵A(0,4),设AB的解析式为,所以,解得,
以直线AB的解析式为
(2)由旋转知,AP=AD, ∠PAD=60,
∴ΔAPD是等边三角形,PD=PA=
如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30°
∴GD=BD=,DH=GH+GD=+=,
∴GB=BD=,OH=OE+HE=OE+BG=
∴D(,)
(3)设OP=x,则由(2)可得D()若ΔOPD的面积为:
解得:所以P(,0)
5
1.已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
求该抛物线的解析式;
若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)
2. 如图,在中,,,,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于
,当点与点重合时,点停止运动.设,.
(1)求点到的距离的长;
(2)求关于的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.
A
B
C
D
E
R
P
H
Q
3在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
A
B
C
M
N
P
图 3
O
A
B
C
M
N
D
图 2
O
A
B
C
M
N
P
图 1
O
4.如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
5如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.
压轴题答案
1. 解:( 1)由已知得:解得
c=3,b=2
∴抛物线的线的解析式为
(2)由顶点坐标公式得顶点坐标为(1,4)
所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)
设对称轴与x轴的交点为F
所以四边形ABDE的面积=
=
=
=9
(3)相似
如图,BD=
BE=
DE=
所以, 即: ,所以是直角三角形
所以,且,
所以.
2 解:(1),,,.
点为中点,.
,.
,
,.
(2),.
,,
,,
即关于的函数关系式为:.
(3)存在,分三种情况:
A
B
C
D
E
R
P
H
Q
M
2
1
①当时,过点作于,则.
,,
.
,,
A
B
C
D
E
R
P
H
Q
,.
A
B
C
D
E
R
P
H
Q
②当时,,
.
③当时,则为中垂线上的点,
于是点为的中点,
.
,
A
B
C
M
N
P
图 1
O
,.
综上所述,当为或6或时,为等腰三角形.
3解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.
∴ △AMN ∽ △ABC.
∴ ,即.
∴ AN=x. ……………2分
∴ =.(0<<4) ……………3分
A
B
C
M
N
D
图 2
O
Q
(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =MN.
在Rt△ABC中,BC ==5.
由(1)知 △AMN ∽ △ABC.
∴ ,即.
∴ ,
∴ . …………………5分
过M点作MQ⊥BC 于Q,则.
在Rt△BMQ与Rt△BCA中,∠B是公共角,
∴ △BMQ∽△BCA.
∴ .
∴ ,.
∴ x=.
∴ 当x=时,⊙O与直线BC相切.…………………………………7分
A
B
C
M
N
P
图 3
O
(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.
∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC.
∴ △AMO ∽ △ABP.
∴ . AM=MB=2.
故以下分两种情况讨论:
= 1 \* GB3 ① 当0<≤2时,.
A
B
C
M
N
P
图 4
O
E
F
∴ 当=2时, ……………………………………8分
= 2 \* GB3 ② 当2<<4时,设PM,PN分别交BC于E,F.
∵ 四边形AMPN是矩形,
∴ PN∥AM,PN=AM=x.
又∵ MN∥BC,
∴ 四边形MBFN是平行四边形.
∴ FN=BM=4-x.
∴ .
又△PEF ∽ △ACB.
∴ .
∴ . ……………………………………………… 9分
=.……………………10分
当2<<4时,.
∴ 当时,满足2<<4,. ……………………11分
综上所述,当时,值最大,最大值是2. …………………………12分
4 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=,∴B(,2)
∵A(0,4),设AB的解析式为,所以,解得,
以直线AB的解析式为
(2)由旋转知,AP=AD, ∠PAD=60,
∴ΔAPD是等边三角形,PD=PA=
如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30°
∴GD=BD=,DH=GH+GD=+=,
∴GB=BD=,OH=OE+HE=OE+BG=
∴D(,)
(3)设OP=x,则由(2)可得D()若ΔOPD的面积为:
解得:所以P(,0)
5
相关其他
人教版初中数学几何图形三角形四边形圆知识点和真题含答案: 这是一份人教版初中数学几何图形三角形四边形圆知识点和真题含答案,共52页。