中考数学专题复习课件:一次函数
展开这是一份中考数学专题复习课件:一次函数,共14页。PPT课件主要包含了知识要点等内容,欢迎下载使用。
1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。当b_____时,函数y=____(k____)叫做正比例函数。
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是___次,⑵、比例系数_____。
2、正比例函数y=kx(k≠0)的图象是过点(_____),(______)的_________。 3、一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的__________。
4、正比例函数y=kx(k≠0)的性质: ⑴当k>0时,图象过______象限;y随x的增大而____。 ⑵当k<0时,图象过______象限;y随x的增大而____。
5、一次函数y=kx+b(k ≠ 0)的性质: ⑴当k>0时,y随x的增大而_________。 ⑵当k<0时,y随x的增大而_________。 ⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图中k、b的符号:
k___0,b___0 k___0,b___0 k___0,b___0 k___0,b___0
(2)、如果一次函数y=kx-3k+6的图象经过原点,那么k的值为________。 (3)、已知y-1与x成正比例,且x=-2时,y=4,那么y与x之间的函数关系式为_________________。
解:一次函数当x=1时,y=5。且它的图象与x轴交点是(6,0)。由题意得
∴一次函数的解析式为 y= - x+6。
点评:用待定系数法求一次函数y=kx+b的解析式,可由已知条件给出的两对x、y的值,列出关于k、b的二元一次方程组。由此求出k、b的值,就可以得到所求的一次函数的解析式。
例2、已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。
例3 柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时)成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。
解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5分别代入上式,得
解析式为:Q=-5t+40 (0≤t≤8)
(2)、取t=0,得Q=40;取t=8,得Q=0。描出点A(0,40),B(8,0)。然后连成线段AB即是所求的图形。
点评:(1)求出函数关系式时,必须找出自变量的取值范围。 (2)画函数图象时,应根据函数自变量的取值范围来确定图象的范围。
图象是包括两端点的线段
2、某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y的值随x值的增大而增大。请你举出一个满足上述条件的函数(用关系式表示)
6、若函数y=kx+b的图像经过点(-3,-2)和(1,6)求k、b及函数关系式。
7、已知一次函数y=kx+b的图象经过A(a,6),B(4,b)两点。a,b是一元二次方程 的两根,且b8、在直角坐标系中,一次函数y=kx+b的图像经过三点A(2,0)、B(0,2)、C(m,3),求这个函数的关系式,并求m的值。
12、如果y+3与x+2成正比例,且x=3时,y=7(1)写出y与x之间的函数关系式;(2)求当x=-1时,y的值;(3)求当y=0时,x的值。
13、已知:y+b与x+a(a,b是常数)成正比例。 求证:y是x的一次函数。
14、为了加强公民的节水意识,合理利用水资源,某城市规定用水标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费,每户每月用水量超过6米3时,超过的部分按1元/米3。设每户每月用水量为x米3,应缴纳y元。(1)写出每户每月用水量不超过6米3和每户每月用水量超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为米3,求该用户5月份的水费。
15、某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(1)服药后______时,血液中含药量最高, 达到每毫升_______毫克,接着逐步衰弱。(2)服药5时,血液中含药量为每毫升____毫克。(3)当x≤2时y与x之间的函数关系式是_____。(4)当x≥2时y与x之间的函数关系式是____。(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间范围是___时。.
相关课件
这是一份数学中考一轮复习 专题09 一次函数 课件,共36页。PPT课件主要包含了一次函数,一次函数的图像,一次函数的性质,解题步骤等内容,欢迎下载使用。
这是一份中考数学复习专题---一次函数课件PPT,共19页。PPT课件主要包含了kx+b,K≠0,考题精析,变式训练,≠-6,考点2,一次函数的图象与性质,错误的是,一次函数的图象及性质,细节铸辉煌等内容,欢迎下载使用。
这是一份2023年中考数学中考总复习专题复习:一次函数图象与性质 课件,共31页。PPT课件主要包含了一次函数性质综合题,课堂练兵,课后小练,典例精讲等内容,欢迎下载使用。