2020-2021学年第11章 反比例函数11.2 反比例函数的图象与性质教案设计
展开11.3 用反比例函数解决问题(2)
学习目标:
1.能灵活运用反比例函数的知识解决实际问题;
2.经历“实际问题——建立模型——拓展应用”的过程,培养分析和解决问题的能力;
3.在交流过程中,让学生学会尊重和理解他人的见解,敢于发表自己的观点.
重点、难点:把实际问题转化为反比例函数这一数学模型,渗透转化的数学思想.
学习过程
一.【预学指导】初步感知、激发兴趣
小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少
二.【问题探究】
问题1:某报报道:一村民在清理鱼塘时被困淤泥中,消防队员以门板作船,泥沼中救人.如果人和门板对淤泥地面的压力合计900N,而淤泥承受的压强不能超过600Pa,那么门板面积至少要多大?
问题2:某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)的反比例函数,且当V =1.5m3时,p=16000Pa.
(1)当V =1.2m3时,求p的值;
(2)当气球内的气压大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
三.【拓展提升】
如图,阻力为1000N,阻力臂长为5cm.设动力y(N),动力臂为x(cm)(图中杠杆本身所受重力略去不计.杠杆平衡时:动力×动力臂=阻力×阻力臂)
(1)当x=50时,求y的值,并说明这个值的实际意义;
当x=100时,求y的值, 并说明这个值的实际意义;
当x=250呢?x=500呢?
x | … | 50 | 100 | 250 | 500 | … |
y | … |
|
|
|
| … |
(2)当动力臂长扩大到原来的n倍时,所需动力将怎样变化?请大家猜想一下.
(3)想一想:如果动力臂缩小到原来的时,动力将怎样变化?为什么呢?
四.【课堂小结】
通过这节课的学习,你有什么感受呢?
五.【反馈练习】
1、一个用电器的电阻是可以调节的,其范围为110~220欧姆,已知电压为220伏
(1)输出功率P与电阻R有怎样的函数关系?
(2)这个用电器输出功率的范围多大?
2、某蓄水池的排水管每小时排水8m3,6小时可将满池水全部排空.
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每小时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q的关系式.
(4)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?
(5)已知排水管的最大排水量为每小时12m3,那么最少需多长时间可将满池水全部排空?
苏科版八年级下册11.2 反比例函数的图象与性质教案设计: 这是一份苏科版八年级下册11.2 反比例函数的图象与性质教案设计,共5页。
苏科版八年级下册第11章 反比例函数11.2 反比例函数的图象与性质教案: 这是一份苏科版八年级下册第11章 反比例函数11.2 反比例函数的图象与性质教案,共2页。教案主要包含了预学指导,问题探究,拓展提升,课堂小结,板书设计,教学反思等内容,欢迎下载使用。
初中数学苏科版八年级下册11.2 反比例函数的图象与性质教学设计: 这是一份初中数学苏科版八年级下册11.2 反比例函数的图象与性质教学设计,共2页。教案主要包含了预学指导,问题探究,拓展提升,课堂小结,板书设计,教学反思等内容,欢迎下载使用。