人教版八年级下册17.1 勾股定理教案
展开17.1 勾股定理
课题: 17.1 勾股定理
| |||
教 学 目 标
| 知识与能力:1.理解勾股定理逆定理的具体内容及勾股数的概念; 2.能根据所给三角形三边的条件判断三角形是否是直角三角形。 | ||
过程与方法:1.经历一般规律的探索过程,发展学生的抽象思维能力; 2.经历从实验到验证的过程,发展学生的数学归纳能力。
| |||
情感态度价值观:1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣; 2.在探索过程中体验成功的喜悦,树立学习的自信心。
| |||
教学重、 难点 |
重点:理解勾股定理逆定理的具体内容。
难点:理解勾股定理逆定理的具体内容。
| ||
学情分析
| 学生已经了勾股定理,并在先前其他内容学习中已经积累了一定的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中,可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
| ||
课前准备 |
多媒体 | ||
教学 过程 | 教师活动 | 学生活动 | 设计意图 |
合作探究
| 1.直角三角形中,三边长度之间满足什么样的关系? 2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢? 1:探究下面有三组数,分别是一个三角形的三边长,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题: 1.这三组数都满足吗? 2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?
有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗? 如果一个三角形的三边长,满足,那么这个三角形是直角三角形 满足的三个正整数,称为勾股数。 1.同学们还能找出哪些勾股数呢? 2.今天的结论与前面学习勾股定理有哪些异同呢? 3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢? 4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢? | 学生回忆后回答
通过学生的合作探究,得出“若一个三角形的三边长,满足,则这个三角形是直角三角形”这一结论;
学生分为4人活动小组,每个小组可以任选其中的一组数。经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足,可以构成直角三角形;②7,24,25满足,可以构成直角三角形;③8,15,17满足,可以构成直角三角形。
为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
学生思考本节课的内容 | 通过情境的创设引入新课,激发学生探究热情。从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。 在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律。
让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
进一步让学生认识该定理与勾股定理之间的关系
|
板书设计
|
勾股定理5 一如果一个三角形的三边长,满足,那么这个三角形是直角三角形 满足的三个正整数,称为勾股数。 二例题
| ||
课后反思 |
|
初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理第4课时教案: 这是一份初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理第4课时教案,共4页。
初中数学人教版八年级下册17.1 勾股定理第3课时教案及反思: 这是一份初中数学人教版八年级下册17.1 勾股定理第3课时教案及反思,共4页。
初中数学人教版八年级下册17.1 勾股定理第2课时教案: 这是一份初中数学人教版八年级下册17.1 勾股定理第2课时教案,共4页。