人教版九年级下册第二十八章 锐角三角函数28.2 解直角三角形及其应用教案设计
展开28.2解直角三角形
教学目标
(一)知识与能力
巩固直角三角形中锐角的三角函数,学会解关于坡度角和有关角度的问题.
(二)方法与过程:
逐步培养学生分析问题解决问题的能力,进一步渗透数形结合的数学思想和方法.
(三)情感、态度与价值观:
培养学生用数学的意识;渗透数学来源于实践又反过来作用于实践的辩证唯物主义观点.
教学重点:能熟练运用有关三角函数知识.
教学难点:解决实际问题.
教学疑点:株距指相邻两树间的水平距离,学生往往理解为相邻两树间的距离而造成错误.
教学过程
1.创设情境,导入新课.
例1 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).
2.介绍概念:坡度与坡角
教师讲解:解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识.例如,当我们要测量如图大坝的高度h时,只要测出仰角α和大坝的水平宽度L,就能算出h=Ltanα.但是,当我们要测量如课本图28.2-10所示的山高h时,问题就不那么简单了.这是由于不能很方便地得到仰角α和山坡长度L.
图28.2-9 图28.2-10
与测坝高相比,测山高的困难在于:坝坡是“直”的,而山坡是“曲”的.怎样解决这样的问题呢?
我们设法“化曲为直,以直代曲”.我们可以把山坡“化整为零”地划分为一些小段,课本图28.2-11表示其中一部分小段.划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长L1,测出相应的仰角α,这样就可以算出这段山坡的高度h1=L1sinα.
图28.2-11
在每个小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,…….
然后我们再“积零为整”,把h1,h2,…相加,于是得到山高h.
以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容.
3.自主探究,解决问题
例2 如右图,已知缆车行驶线与水平线间的夹角α=30°,β=45°.小明乘缆车上山,从A到B,再从B到D都走了200米(即AB=BD=200米),请根据所给的数据计算缆车垂直上升的距离.(计算结果保留整数,以下数据供选用:sin47°≈0.7314,cos47°≈0.6820,tan47°≈1.0724)
分析:缆车垂直上升的距离分成两段:BC与DF.分别在Rt△ABC和Rt△DBF中求出BC与DF,两者之和即为所求.
解:在Rt△ABC中,AB=200米,∠BAC=α=30°,
∴BC=AB·sinα=200sin30°=100(米).
在Rt△BDF中,BD=200米,∠DBF=β47°,
∴DF=BD·sinβ=200·sin47°≈200×0.7314=146.28(米).
∴BC+DF=100+146.28=246.28(米).
答:缆车垂直上升了246.28米.
说明:解直角三角形在实际生活中的应用,是中考考查的重点,也是考查的热点.要解决好这类问题:一是要合理地构造合适的直角三角形;二是要熟记特殊角的三角函数值;三是要有很好的运算能力和分析问题的能力.
4.巩固练习
教材练习 2
5.总结与扩展
引导学生回忆前述例题,进行总结,以培养学生的概括能力.
1.弄清俯角、仰角、株距、坡度、坡角、水平距离、垂直距离、水位等概念的意义,明确各术语与示意图中的什么元素对应,只有明确这些概念,才能恰当地把实际问题转化为数学问题.
2.认真分析题意、画图并找出要求的直角三角形,或通过添加辅助线构造直角三角形来解决问题.
3.选择合适的边角关系式,使计算尽可能简单,且不易出错.
4.按照题中的精确度进行计算,并按照题目中要求的精确度确定答案以及注明单位.
6.布置作业
利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图6-35阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:
①横断面(等腰梯形)ABCD的面积;
②修一条长为100米的渠道要挖去的土方数.
人教版九年级下册第二十八章 锐角三角函数28.2 解直角三角形及其应用教案及反思: 这是一份人教版九年级下册第二十八章 锐角三角函数28.2 解直角三角形及其应用教案及反思,共4页。教案主要包含了学习目标,学习重点,学习难点,课堂练习,归纳小结等内容,欢迎下载使用。
初中数学人教版九年级下册28.2 解直角三角形及其应用教案: 这是一份初中数学人教版九年级下册28.2 解直角三角形及其应用教案,共3页。
初中数学冀教版九年级上册28.2 过三点的圆教案: 这是一份初中数学冀教版九年级上册28.2 过三点的圆教案,共4页。教案主要包含了创设问题情境,引入新课,一起探究,试着做做,练习,小结,布置作业等内容,欢迎下载使用。