数学北师大版5.1 认识一元一次方程教学设计
展开
这是一份数学北师大版5.1 认识一元一次方程教学设计,共4页。教案主要包含了师生互动,实验引入,讲授新课,尝试反馈,巩固练习,总结反思等内容,欢迎下载使用。
第五章 一元一次方程 1 认识一元一次方程第2课时教学重点与难点教学重点:理解等式的基本性质,并能用它们来解方程.教学难点:1.对等式的基本性质2中“除以同一个不为0的数”的掌握与应用.2.利用等式的两条性质进行等式变形.学情分析认知基础:七年级学生的思维方式正在以直观形象思维为主,逐渐向抽象逻辑思维转化,虽然直观的实验演示能使他们体会出其中的数学知识,但是对把自己的体会概括成一般性的规律表达出来这个要求,学生还是会感到比较困难,特别是在数学语言的表述上,往往把握得不够准确和严密.活动经验基础:学生独立思考和探索的愿望和能力比以前有所提高,能在探索的过程中初步形成自己的观点,尝试用语言阐述并与其他同学进行交流,同时又在倾听别人意见的过程中逐渐完善自己的想法.教学目标(1)通过天平实验,归纳出等式的基本性质,并会用数学符号表达.(2)理解等式的基本性质,能用它们来解方程.(3)通过观察、操作、归纳等数学活动,感受数学思考过程的条理性和数学结论的严密性.(4)感受等式的两条性质体现出的数学的对称美.教学方法采用“提出问题——探究规律——得出性质——应用性质”的教学结构,从能形象的表达等式性质的天平、实验入手,使学生在感性观察的基础上,先获取等式第一条性质的结论,并尝试表述,然后再通过类比、模仿,得到第二条性质.整个教学过程在教师指导下,学生主要经历自主探索和合作交流来完成学习活动,并在探究中形成自己的观点,加以应用.教学过程一、师生互动,实验引入设计说明通过天平实验,形象直观的展示等式的基本性质,并让学生在动手操作过程中,主动获取知识,丰富教学活动经验,学会探索,自然过渡到新课学习.引言:上节课我们学习了一元一次方程、方程的解的概念,那么方程的解是怎样获得的呢?今天我们就来研究如何用等式的基本性质解一元一次方程.教师先做一个简单的演示:两只手中各拿4支粉笔,现在再分别从粉笔盒里取出两支,放入相应手中,请问两只手中粉笔个数的关系如何?如果将开始手中的粉笔各放回两支,又怎样呢?学生很快计算出结果,回答两次变化的结果都是两只手中的粉笔数相等.教师适时引导学生将其抽象成数学问题,即:4=4分别变形为:4+2=4+2和4-2=4-2.提出问题:等式就像平衡的天平,你能否通过加、减天平两边的重量,使天平继续保持平衡呢?大家动手实验一下.组织学生分组自己动手,利用天平进一步探索、体会这种等式的变化.这次要求学生把研究的结果分成几种情况,并试着用精练的语言叙述出来,或分组推荐代表回答.教学说明先从学生已有的知识出发,提出新问题,激发学习的兴趣和动机,让学生从一开始就充满好奇心和获取知识的欲望.然后提供实验器材,让学生在动手活动中自主探索,合作交流,并要求学生除了在操作时注意记录个人获得的成功体验外,还要多了解他人的想法,把在实验和观察中获得的直观感受,用数学语言表述出来.教师要积极参与到实验中,多观察每个学生的表现,注重学生知识的形成过程.二、讲授新课设计说明引导学生在观察、讨论的基础上归纳等式的基本性质,并应用性质解简单方程.1.实验总结用多媒体展示图1:图1学生容易表述出:如果在平衡的天平的两边都加同样的量,天平保持平衡;反过来,如果在平衡的天平的两边都减同样的量,天平仍保持平衡.在此基础上提出两个问题.问题1:你们能根据天平的性质归纳出等式的性质吗?学生回答:等式两边同时加上(或减去)同一个数后,其结果仍相等.问题2:如果扩大范围,将等式两边同时加上(或减去)同一个代数式呢?结果还是等式吗?请大家试一试.组织学生小组内列举,交流,得到肯定答案.2.归纳等式的性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.问:你能试着用数学符号表达出这个性质吗?若x=y,则x+c=y+c(c为代数式);x-c=y-c(c为代数式).3.归纳等式的性质2:再用多媒体展示图2:图2问题1:请同学们继续观察这幅图片,它反映的问题和第一幅一样吗?学生回答:不一样,这里的物品数是成倍增加的.问题2:如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?学生易回答:仍平衡.问题3:你能模仿性质1总结一下吗?这里学生的回答是多种多样的,而且容易出现像“等式两边同时乘以或除以同一个数,所得结果仍是等式”等不正确的结论,教师要把握好,组织学生充分讨论,确定性质2所必需的限制条件.等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.用数学符号可以表示为:若x=y,则cx=cy(c为一数值);=(c为一数值,且c≠0).4.例题讲解等式的两条基本性质是今后解方程的重要依据.例题:(教材例1、例2)利用等式的性质解下列方程:(1)x+2=5;(2)3=x-5;(3)-3x=15;(4)--2=10.先让学生尝试自己解方程,然后请他们讲解每一步的步骤,并说出依据,体会等式的性质在解方程中的应用.方程解完后再问:你的答案对不对呢?怎样验证你的答案呢?引导学生探讨检验的方法就是把求出的解代入原方程,鼓励他们养成检验的好习惯.随堂练习:教材“随堂练习”第1题.教学说明本环节是学生从活动中总结规律,经历知识形成的重要过程.学生在天平实验的操作过程中,通过多次演示,能够收集到许多和等式的性质有关的信息,而把这些信息先梳理,再分类,最后用语言表述出来,对他们来说应该是一个不小的挑战.教师应特别做好引导和启发工作,既要鼓励学生大胆表述自己的见解,也要及时修正表述中不确切的语句,特别要突出性质2中对于除法运算中零不能作除数这个限制条件,反复强化本节课的重难点.三、尝试反馈,巩固练习设计说明主要是反复训练等式的两条基本性质,可以让学生在练习中多次重复表述,以加强记忆和理解.1.判断:(1)等式两边同时减去一个数或式子,结果仍相等.(2)等式两边同时乘以同一个不为零的数,结果仍是等式.(3)等式两边同时除以同一个数,结果仍是等式.(4)一个等式的左、右两边分别与另一个等式的左、右两边分别相加,结果仍相等.答案:(1)√ (2)√ (3)× (4)√2.将方程4x-5=7的两边________,得到4x=12,这是根据__________;再将等式两边都________,得到x=3,这是根据__________.答案:加5 等式的性质1 除以4 等式的性质23.下列各等式正确变形的是( )A.由-x=y,得x=2y B.由3x-2=2x+2,得x=4C.由2x-3=3x,得x=3 D.由3x-5=7,得3x=7-5答案:B4.下列说法正确的是( )A.在等式ab=ac两边都除以a,可得b=cB.在等式a=b两边都除以c2+1,可得=C.在等式=两边都除以a,可得b=cD.在等式2x=2a-b两边都除以2,可得x=a-b答案:B教学说明练习题主要采用判断题、填空题、选择题这些基本题型,一是知识点比较单一,就是等式的两条基本性质;二是中考试题也是这几种考查方式,关键是要让学生练准、练熟.另外,可以视学生的掌握情况而灵活选择答题的方法,比如竞赛形式,既可以增强学生课堂上的参与意识,又活跃课堂气氛,加深学生对知识的印象.四、总结反思问题1:把已知等式变形成一个新等式的依据是什么?处理问题的关键在哪里?答:依据是等式的基本性质,处理的关键是通过观察新等式,判断准要选用哪条性质进行变形.问题2:等式的基本性质和解方程的关系是怎样的?答:等式的基本性质是解方程的依据.评价与反思1.本节课采用“提出问题——探究规律——得出性质——应用性质”的教学结构,把数学知识同熟悉的生活情境联系起来,在引导学生亲身实践天平实验的过程中,既激发了学生参与学习的热情,又着重培养了学生的动手能力、思维能力和抽象概括能力.探究活动应该不断给学生提供表现自己的机会,启发他们注意学习清晰而有条理表达自己的观点和理解他人的思想,让学生懂得不仅要活动,更要善于思考,从活动中总结规律,才是知识形成的真谛.2.本节课成功创设师生、生生交往互动的关系,注重教师在引导过程中与学生平等的交流,并给予恰到好处的点拨;教师鼓励学生表达自己的见解,并且在加深理解的基础上,对不同的答案开展讨论,引导学生分享彼此的思想和结果,并重新审视自己的想法,既增强了学生学习的自信心和克服困难的意志力,又有利于培养自主意识和合作精神.
相关教案
这是一份数学七年级上册5.1 认识一元一次方程教学设计,共8页。教案主要包含了二的真正含义;培养学生严谨等内容,欢迎下载使用。
这是一份北师大版七年级上册5.1 认识一元一次方程教学设计,共7页。教案主要包含了创设情境,趣味导入,合作交流,探究新知,知识应用,巩固提高,课堂小结,反思提升,当堂达标,反馈矫正,布置作业,拓展延伸等内容,欢迎下载使用。
这是一份北师大版七年级上册5.1 认识一元一次方程教案设计,共2页。