|教案下载
终身会员
搜索
    上传资料 赚现金
    北师大初中数学八上《1.3勾股定理的应用》word教案 (7)
    立即下载
    加入资料篮
    北师大初中数学八上《1.3勾股定理的应用》word教案 (7)01
    北师大初中数学八上《1.3勾股定理的应用》word教案 (7)02
    北师大初中数学八上《1.3勾股定理的应用》word教案 (7)03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版八年级上册3 勾股定理的应用教案设计

    展开
    这是一份北师大版八年级上册3 勾股定理的应用教案设计,共7页。教案主要包含了例1-1,例1-2等内容,欢迎下载使用。

    勾股定理的应用

    教学目标

    教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.

    能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

    2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

    情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.

    2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.

    教学重点难点:

    重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

    难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

    教学过程

    1、创设问题情境,引入新课:

    前几节课我们学习了勾股定理,你还记得它有什么作用吗?

    例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?

    根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在RtABC中,AB2=AC2+BC2=122+52=132;AB=13米.

    所以至少需13米长的梯子.

    2、讲授新课:、蚂蚁怎么走最近

                          

    出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3).       

    (1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)

    (2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B 点的最短路线是什么?你画对了吗?

    (3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)

    我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA将圆柱的侧面展开(如下图).

    我们不难发现,刚才几位同学的走法:

    (1)AA′→B;  (2)AB′→B;

    (3)ADB;   (4)A—→B.

    哪条路线是最短呢?你画对了吗?

    第(4)条路线最短.因为两点之间的连线中线段最短.

    、做一做:教材14页。李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测 DAB=90°CBA=90°.连结BD或AC,也就是要检测DAB和CBA是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题.

    、随堂练习

    出示投影片

    1.甲、乙两位探险者,到沙漠进行探险.某日早晨800甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午1000,甲、乙两人相距多远?

    2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?

     

    1.分析:首先我们需要根据题意将实际问题转化成数学模型.

    解:(如图)根据题意,可知A是甲、乙的出发点,1000时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).

    在RtABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.

    2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.

    解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.

    (1)x2=1.52+22,x2=6.25,x=2.5

    所以最长是2.5+0.5=3(米).

    (2)x=1.5,最短是1.5+0.5=2(米).

    答:这根铁棒的长应在2~3米之间(包含2米3米).

    3.试一试(课本P15)

    在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

    我们可以将这个实际问题转化成数学模型.

    解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得

    (x+1)2=x2+52,x2+2x+1=x2+25

    解得x=12

    则水池的深度为12尺,芦苇长13尺.

    、课时小结

    这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.

    、课后作业

    课本P14、习题6.4.

    教学反思:这节的内容综合性比较强,可能有些同学掌握的不是太好。

     

     

     

     

     

     

     

     

     

     

     

     

                     勾股定理的应用习题课第二课时

    教学目标

    知识要求:     能解决较复杂的应用题,渗透分类讨论思想

    能力训练要求:

    提高分析问题、解决问题的能力及渗透数学建模的思想.

    情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.

    2.在解决实际问题的过程中,体验数学学习的实用性

    教学重点难点:

    .难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

    教学过程

     

    1.长方体(或正方体)面上的两点间的最短距离

    长方体(或正方体)是立体图形,但它的每个面都是平面.若计算同一个面上的两点之间的距离比较容易,若计算不同面上的两点之间的距离,就必须把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,这样就可以利用勾股定理加以解决了.所以立体图形中求两点之间的最短距离,一定要审清题意,弄清楚到底是同一平面中两点间的距离问题还是异面上两点间的距离问题.

    谈重点  长方体表面上两点间最短距离

    因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.

    【例1-1】 如图①是一个棱长为3 cm的正方体,它的6个表面都分别被分成了3×3的小正方形,其边长为1 cm.现在有一只爬行速度为2 cm/s的蚂蚁,从下底面的A点沿着正方体的表面爬行到右侧表面上的B点,小明把蚂蚁爬行的时间记录了下来,是2.5 s.经过简短的思考,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.

    知道小明为什么会佩服这只蚂蚁的举动吗?

    解:如图②,在Rt△ABD中,AD4 cmBD3 cm.

    由勾股定理,AB2BD2AD2=32+42=25,AB5 cm,∴蚂蚁的爬行距离为5 cm.

    又知道蚂蚁的爬行速度为2 cm/s,

    ∴它从点A沿着正方体的表面爬行到点B处,需要时间为=2.5 s.

    小明通过思考、判断,发现蚂蚁爬行的时间恰恰就是选择了这种最优的方式,所以他感到惊讶和佩服.

    【例1-2】 如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?

    解:蚂蚁A点沿长方体的表面爬行到C1点,有三种方式,分别展成平面图形如下:

    如图①,在Rt△ABC1中,

    ACAB2BC=42+32=52=25.

    AC1=5.

    如图②,在Rt△ACC1中,

    ACAC2CC=62+12=37.

    如图③,在Rt△AB1C1中,

    ACABB1C=52+22=29.

    ∵25<29<37,

    ∴沿图①的方式爬行路线最短,最短的路线是5.

    点技巧  巧展长方体

    求解此类问题时只需对长方体进行部分展开,画出局部的展开图,若将长方体全部展开,不仅没有必要反而会扰乱视线.

    2.圆柱体(或圆锥体)面上的两点间的最短距离

    圆柱体(或圆锥体)是立体图形,从其表面看两点之间的连线绝大部分是曲线,那么怎样确定哪一条是最短的呢?解决问题的方法是将圆柱(或圆锥)的侧面展开,转化为平面图形,应用勾股定理解决,而不能盲目地凭感觉来确定.

    【例2】 如图①所示,一只蚂蚁在底面半径为20 cm,高为30π cm的圆柱下底的点A处,发现自己正上方圆柱上边缘的B处有一只小昆虫,便决定捕捉这只小昆虫,为了不引起这只小昆虫的注意,它故意不走直线,而绕着圆柱,沿一条螺旋路线,从背后对小昆虫进行突然袭击,结果蚂蚁偷袭成功,得到了一顿美餐.根据上述信息,请问蚂蚁至少爬行多少路程才能捕捉到小昆虫?

    分析:解此题的关键是把圆柱的侧面展开,利用两点之间线段最短和勾股定理作答.

    解:假设将圆柱体的侧面沿AB剪开铺平如图②,则对角线AB即为蚂蚁爬行的最短路线.

    在Rt△ACB中,AC=40π cm,BC=30π cm.

    由勾股定理,得AB2AC2BC2=(40π)2+(30π)2=(50π)2

    AB=50π cm.

    ∴蚂蚁至少爬行50π cm才能捕捉到小昆虫.

    谈重点  圆柱体两点间的最短距离

    本题文字叙述较多,要求在阅读的基础上提炼有用的信息,具体解题时先将圆柱沿AB剪开,将侧面展开成一矩形,会发现对角线AB即为蚂蚁爬行的最短路线,再运用勾股定理即可求得.

    3.生活中两点间的最短距离

    用勾股定理解决实际问题的关键是从实际问题中构建数学模型——直角三角形,再正确利用两点之间线段最短解答.

    【例3】 如图①是一个三级台阶,它的每一级的长、宽和高分别为5 dm,3 dm和1 dm,AB是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是多少?

    分析:由于蚂蚁是沿台阶的表面由A爬行到B,故需把三个台阶展开成平面图形(如图②).

    解:将台阶展开成平面图形后,可知AC=5 dm,BC=3×(3+1)=12 dm,∠C=90°.

    在Rt△ABC中,∵AB2AC2BC2

    AB2=52+122=132

    AB=13 dm.

    蚂蚁爬到B点的最短路程是13 dm.

     

    4.如何正确利用勾股定理及其逆定理解决生活中的问题

    利用勾股定理及其逆定理解决生活中的实际问题,重要的是将实际问题转化成数学模型(直角三角形模型),将实际问题中的“数”转化为定理中的“形”,再转化为“数”.解题的关键是深刻理解题意,并画出符合条件的图形.

    解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,具体步骤是:

    (1)把立体图形展成平面图形;

    (2)确定点的位置;

    (3)确定直角三角形;

    (4)分析直角三角形的边长,用勾股定理求解.

    【例4】 如图①,圆柱形玻璃容器的高为18 cm,底面周长为60 cm,在外侧距下底1 cm的点S处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1 cm的点F处有一只苍蝇,急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离是__________cm.

    解析:将圆柱的侧面展开得到它的侧面展开图(如图②),CDAB,且ADBC底面周长,BSDF1 cm.则蜘蛛所走的最短路线的长度即为线段SF的长度.过S点作SMCD,垂足为M,由条件知,SMAD×60=30  cmMCSBDF1 cm,所以MF=18-1-1=16 cm,在Rt△MFS中,由勾股定理得SF2=162+302=342,所以SF34 cm.故蜘蛛需要爬行的最短距离是34 cm.

    5.勾股定理与方程相结合的应用

    方程思想是一种重要的数学思想.所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.而勾股定理反映的直角三角形三边的关系正是构建方程的基础.故勾股定理的许多问题的解决都要跟方程相结合.方程思想是勾股定理中的重要思想.

    【例5】 如图,有一张直角三角形状纸片ABC,两直角边AC6 cmBC8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?

    解:CDx cm,由题意知DEx cm,BD=(8-x) cm,AEAC6 cm

    在Rt△ABC中,由勾股定理得AB10 cm.

    于是BE=10-6=4 cm.

    在Rt△BDE中,由勾股定理得42x2=(8-x)2解得x=3.

    CD的长为3 cm.

     

     

    教学反思:难度较大,需要举一反三,不断复习总结

    相关教案

    青岛版七年级上册1.3 线段、射线和直线教学设计: 这是一份青岛版七年级上册1.3 线段、射线和直线教学设计,共3页。

    初中数学华师大版八年级上册第14章 勾股定理14.2 勾股定理的应用教案: 这是一份初中数学华师大版八年级上册第14章 勾股定理14.2 勾股定理的应用教案,共4页。

    数学八年级上册1.3 证明教案设计: 这是一份数学八年级上册1.3 证明教案设计,共2页。教案主要包含了画出命题的图形,结合图形写出已知等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map