北师大版八年级上册1 函数教学设计
展开
这是一份北师大版八年级上册1 函数教学设计,共4页。教案主要包含了教学目标,能力目标,情感目标,教学重点,教学过程,课后小结,课后作业等内容,欢迎下载使用。
一、教学目标
1、理解函数图象的概念。
2、经历作图过程,初步了解作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
4、能较熟练作出一次函数的图象。
二、能力目标
1、已知解析式作函数的图象,培养学生数形结合的意识和能力。
2、在探究活动中发展学生的合作意识和能力。
三、情感目标
1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。
2、加强新旧知识的联系,促进学生新的认知结构的建构。
四、教学重点
1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
五、教学过程
1、新课导入
上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。
2、讲授新课
(1)函数图象的概念
把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合。
(2)作一次函数的图象
例1:作出一次函数y=2x+1的图象
解:列表:
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连接起来,得到y=2x+1的图象(如图6-4),它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。
做一做
(1)作出一次函数y=-2x+5的图象,
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。
列表:
描点:以表中各组对应值作为点的坐标,在直角坐标第内描出相应的点。
连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。
图象如下:
在图象上找点A(3,-1)B(4,-3),当x=3时,y=-2×3+5=-1;当x=4时,y=-2×4+5=-3。(3,-1),(4,-3)满足关系式y=-2x+5。
3、议一议
(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?
(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?
(3)一次函数y=kx+b的图象有什么特点?
请大家分组讨论,然后回答。
(1)满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上。
(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5。
由此看来,满足函数关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上;反过来,一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5。
所以,一次函数的代数表达式与图象是一一对应的,即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x,纵坐标y都满足一次函数的代数表达式。
小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b的图象也称为直线y-kx+b。
4、课堂练习
分别作出一次函数y=x与y=-3x+9的图象。
六、课后小结
1、函数图象的概念。
2、作一次函数的步骤。
3、明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了。
七、课后作业
P 163习题6.3
教后感:经历作图过程,初步了解作函数图象的一般步骤。归纳总结作函数图象的一般步骤,发展学生的总结概括能力,培养学生数形结合的意识和能力。在探究活动中发展学生的合作意识和能力。
§4.3.一次函数的图象(二)
一、教学目标
1、了解正比例函数y=kx的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象。
二、能力目标
1、进一步培养学生数形结合的意识和能力。
2、通过议一议,培养学生的探索精神和合作交流意识。
三、情感目标
让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。
四、教学重点
1、正比例函数的图象的特点。
2、一次函数的图象的性质。
五、教学过程
1、新课导入
上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课
(1)首先我们来研究一次函数的特例——正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象。
3、议一议
(1)正比例函数y=kx的图象有什么特点?(都经过原点)
(2)你作正比例函数y=kx的图象时描了几个点?(至少两点)
(3)直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴正方向所成的锐角最小?
4、小结:正比例函数的图象有以下特点:
(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=kx图象中,当k>0时,k的值越大,函数图象与x轴正方向所成的锐角越大。
(4)在正比例函数y=kx的图象中,当k>0时,y的值随x值的增大而增大;当k0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。
由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两
个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),(-,0)比较简单。
6、想一想
(1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?(y=5x的函数值先达到20,这说明随着x的增加,y=5x的函数值比y=2x+6的函数值增加得快)
(2)直线y=-x与y=-x+6的位置关系如何?(平行,一次函数k相同就平行)
(3)直线y=2x+6与y=-x+6的位置关系如何?(相交)
7、课堂练习
1、下列一次函数中,y的值随x值的增大而增大的是( )
A、y=-5x+3 B、y=-x-7 C、y=- D、y=-+4
2、下列一次函数中,y的值随x值的增大而减小的是( )
A、y=x-8 B、y=-x+3 C、y=2x+5 D、y=7x-6
六、课后小结
1、正比例函数y=kx的图象的特点。2、一次函数y=kx+b的图象的特点。
七、作业
P 165习题6.4
教后感:通过议一议,培养学生的探索精神和合作交流意识。让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。
x
…
-2
-1
0
1
2
…
y=2x+1
…
-3
-1
1
3
5
…
x
…
-2
-1
0
1
2
…
y=-2x+5
…
9
7
5
3
1
…
相关教案
这是一份初中数学北师大版八年级上册3 一次函数的图象教案,共10页。教案主要包含了创设情境,引入新课,合作交流,探究新知,动手操作,深化探究,巩固练习,深化理解,课时小结,回归系统,课堂检测,矫正评价,布置作业,巩固知识等内容,欢迎下载使用。
这是一份北师大版八年级上册3 一次函数的图象教案设计,共10页。教案主要包含了创设情境,引入新课,合作交流,探究新知,动手操作,深化探究,巩固练习,深化理解,课时小结,回归系统,课堂检测,矫正评价,布置作业,巩固知识等内容,欢迎下载使用。
这是一份北师大版八年级上册3 一次函数的图象教案,共5页。教案主要包含了【学生特征分析】,【教学任务分析】,【教学过程】,【资源开发】,【教学评价】等内容,欢迎下载使用。