2020-2021学年1 为什么要证明教案
展开第七章 平行线的证明
7.1 为什么要证明
一、学生知识状况分析
学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.
学生活动经验基础: 在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.
二、教学任务分析
学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。因此,本课时的教学目标是:
1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.
2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.
3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.
三、教学过程分析
本节课的教学思路为:验证活动(1)——猜想并验证活动(2)——猜想并验证活动(3)——经验总结——学生练习——课堂小结——巩固练习
第一环节:验证活动(1)
活动内容:
某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n, n2-n+11的值都是质数.你认为呢?与同伴交流.
参考答案:列表归纳为
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | … |
n2-n+11 | 11 | 11 | 13 | 17 | 23 | 31 | 41 | 53 | 67 | 83 | 101 | 121 |
|
是否为质数 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 不是 |
|
第二环节:猜想并验证活动(2)
活动内容:
如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?
参考答案:设赤道周长为c,铁丝与地球赤道之间的间隙为 :
它们的间隙不仅能放进一个红枣,而且也能放进一个拳头.
第三环节:猜想并验证活动(3)
活动内容:
如图,四边形ABCD四边的中点E、F、G、H,度量四边形EFGH的边和角,你能发现什么结论?改变四边形ABCD的形状,还能得到类似的结论吗?
参考答案:连接AC.
∵E、F、G、H分别是四边形ABCD四边中点,
∴EF∥AC,EF=AC;GH∥AC,GH=AC;
∴EF平行且等于GH,
∴四边形EFHG为平行四边形.
第四环节:归纳与总结
活动内容:
① 通过以上三个数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步, 有根有据的推理.
②举例说明“推理意识”与推理方法.
第五环节:反馈练习
活动内容:1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.
答案:a与b的长度相等.
第1小题图 第2小题图
2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.
答案:线段b与线段d在同一直线上.
3.当n为正整数时,n2+3n+1的值一定是质数吗?
答案:经验证:当n为正整数时,n2+3n+1的值一定是质数.
第六环节:课堂小结
活动内容:
今天这节课你学到了什么知识?
参考答案:① 要说明一个数学结论是否正确,无论验证多少个特殊的例子,也无法保证其正确性.
②要确定一个数学结论的正确性,必须进行一步一步、有根有据的推理.
第七环节 巩固练习
课本第217页习题6.1第2,3题.
初中北师大版1 为什么要证明教案及反思: 这是一份初中北师大版1 为什么要证明教案及反思,共5页。教案主要包含了教学目标,重点难点,教学过程等内容,欢迎下载使用。
初中北师大版1 为什么要证明教案: 这是一份初中北师大版1 为什么要证明教案,共5页。教案主要包含了知识与能力目标,过程与方法目标,情感态度价值观目标,教学重点,教学难点等内容,欢迎下载使用。
北师大版1 为什么要证明教学设计及反思: 这是一份北师大版1 为什么要证明教学设计及反思,共2页。