北师大版八年级下册1 平行四边形的性质教案
展开
这是一份北师大版八年级下册1 平行四边形的性质教案,共5页。教案主要包含了创设情境,引入新课,感悟图形,明确概念,引导实验,探索新知,例题讲解,活用知识,归纳小结等内容,欢迎下载使用。
《平行四边形的性质》第1课时教学目标知识与技能:理解平行四边形的概念,掌握平行四边形的边、角性质,并能初步用其来解决实际问题.过程与方法:通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想.情感、态度、价值观:让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.教学重难点重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点:运用平行四边形的性质进行有关的论证和计算.教学过程:一、创设情境,引入新课做一做将两张全等的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,此时:(1)两张纸片拼成了怎样的图形?(2)这个图形中有哪些相等的角?有没有互相平行的线段?(3)用简洁的语言刻画这个图形的特征,并与同伴交流.通过观察,让学生勾勒出发现的几何图形:平行四边形,然后举出一些生活中的实例.从而引出平行四边形在日常生活中应用广泛,是一种美观实用的图形,因此我们有必要系统学习平行四边形.二、感悟图形,明确概念1、观察质疑:平行四边形如何区别于一般的四边形.让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形2、引入平行四边形对边、邻边、对角、邻角、对角线等概念.3、平行四边形的表示:通过演示使学生学会用文字语言、图形语言、符号语言来描述.如图,平行四边形ABCD,记作ABCD.根据定义画出平行四边形,得到图形语言,还可以用符号语言来描述平行四边形的定义:AB//CD,AD//BC.三、引导实验,探索新知1、探索平行四边形的性质:由定义可知平行四边形的对边平行.2、质疑:平行四边形除以上性质外还有其他性质吗?鼓励学生大胆猜想.(提示:请学生仿照三角形的学习方法从边和角去探索)第一步:猜想边和角之间的数量关系(对边相等,对角相等).第二步:小组合作学习探索:让各组学生画平行四边形,用测量、旋转、平移、推理等方法验证上面的猜想.3、小组汇报发现:平行四边形的对边相等;平行四边形的对角相等.四、例题讲解,活用知识例题:小明用一根36米长的绳子围成了一个平行四边形的场地,其中一条边AB长8米,其他三条边各长多少?师生共同完成此题,并重点强调平行四边形性质的几何表述如:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC∵AB=8,∴CD=8(m)又AB+BC+CD+AD=36,∴AD=BC=10(m)五、归纳小结归纳总结平行四边形的性质:边:对边相等;对边平行.角:对角相等;邻角互补;四个角之和为360°.第2课时教学目标知识目标:探索并掌握平行四边形的性质;探索“平行线之间的距离处处相等”等结论并能灵活运用这些结论进行推理和计算.能力目标:在观察、操作、推理、归纳的探索中,进一步培养学生的数学说理能力与习惯.情感目标:通过小组交流合作探究学习,促进同学间的情感交流,体会学习的乐趣,在自我评价中学会自我肯定,增强学习的自信心.教学重难点重点:掌握“平行四边形的对角线互相平分”及“平行线间的距离处处相等”.难点:平行四边形性质的灵活运用及几何计算题的解题表达.教学过程一、复习巩固提问:1、平行四边形是如何定义的?生活中有什么物体是平行四边形形状的? 如推拉门、篱笆等. 2、前面我们学习了平行四边形的什么性质?学生答:(1)平行四边形是中心对称图形,对称中心是两条对角线的交点;(2)平行四边形的对边平行且相等;(3)平行四边形对角相等.3、有一块平行四边形形状的米糕,小亮亮和小晶晶要一人吃一半,你能帮他们平分这块米糕吗?动手画一个平行四边形,试试看.(同学答:可过对称中心切开,或沿对角线切开等多种方法)这节课我们一起来探究平行四边形对角线的性质及其推论.二、新知探究学习1、观察平行四边形ABCD的对角线有什么特征?OA与OC、OB与OD的大小有什么关系?为什么?平行四边形ABCD是一个中心对称图形,对角线相交于平行四边形的对称中心,所以OA=OC,OB=OD.你能用文字叙述所得的结论吗?归纳:平行四边形的对角线互相平分.2、小组活动:动手量一量OA,OC, OB,OD看看结论是否正确.3、几何画板动画演示验证:平行四边形的对角线互相平分.知识应用:例1:如图,在平行四边形ABCD的对角线AC和BD相交于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?解:在平行四边形ABCD中,已知AB=6,AO+BO+AB=15,∴AO+BO=15-6=9.又∵AO=OC,BO=OD(平行四边形对角线互相平分),∴AC+BD=2AO+2BO=2(AO+BO)=2×9=18.变式训练:平行四边形ABCD的周长为60cm,△AOB的周长比△COB的周长大8cm,则AB=_______,BC=_______.例2:如图,已知L1//L2,AB//CD,CE⊥L2点E,FG⊥L2于点G.则下列说法中错误的是( )(A)AB=CD(B)CE=FG(C)A、B两点间的距离就是线段AB的长度.(D)L1与L2间的距离就是线段CD的长度.三、课堂练习1、在平行四边形ABCD中,两条对角线AC、BD相交于点O,指出图形中相等的线段. (第1题) (第2题)2、如图,如果直线L1∥L2,那么△ABC的面积和△DBC的面积是相等的.你能说出理由吗?你还能在这两条平行线L1、L2之间画出其他与△ABC面积相等的三角形吗?3、已知四边形ABCD是平行四边形,E、F是边BC上的三等分点,AF、DE交于点M,请判断四边形ABEM与四边形FCDM的面积谁大谁小,为什么?4、在平行四边形ABCD中,E、F分别在AD、AB上,问△EBC和△DCF的面积相等吗?5、从前,一位老农民有两个儿子,他的家业是一块形状是平行四边形的土地,并且在地里有一口水井,井的位置不在地的中间,如图所示,老人想把这块地平分给两个儿子,并且两家能共用井,他将水井与地的四角分别相连,把地分为四块,每个儿子拿面对的两块.于是大儿子拿长边AB和DC上的两块,小儿子拿短边AB和CD上的两块,请问两个儿子拿到的地一样吗?四、课堂小结1、你能归纳我们所学的平行四边形的性质吗?2、这节课你有什么收获?存在什么问题?
相关教案
这是一份初中数学冀教版八年级下册22.1 平行四边形的性质教案,共2页。
这是一份初中数学北师大版八年级下册1 平行四边形的性质教学设计,共3页。
这是一份初中数学北师大版八年级下册1 平行四边形的性质教学设计,共4页。教案主要包含了设置问题情境,引入课题.,传授新课,达标小测等内容,欢迎下载使用。