人教版九年级上册22.1 二次函数的图象和性质综合与测试第2课时教案
展开22.1 二次函数的图象和性质
教学时间 |
| 课题 | 22.1 二次函数的图象和性质 | 课型 | 新授课 | |||||||||||||||||||||||||||
教 学 目 标 | 知 识 和 能 力 | 使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。 | ||||||||||||||||||||||||||||||
过 程 和 方 法 | 使学生经历、探索二次函数y=ax2图象性质的过程 | |||||||||||||||||||||||||||||||
情 感 态 度 价值观 | 培养学生观察、思考、归纳的良好思维习惯
| |||||||||||||||||||||||||||||||
教学重点 | 使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。 | |||||||||||||||||||||||||||||||
教学难点 | 用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。 | |||||||||||||||||||||||||||||||
教学准备 | 教师 | 多媒体课件 | 学生 | “五个一” | ||||||||||||||||||||||||||||
课 堂 教 学 程 序 设 计 | 设计意图 | |||||||||||||||||||||||||||||||
一、提出问题 1,同学们可以回想一下,一次函数的性质是如何研究的? (先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质) 2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么? (可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象) 3.一次函数的图象是什么?二次函数的图象是什么? 二、范例 例1、画二次函数y=x2的图象。 解:(1)列表:在x的取值范围内列出函数对应值表:
(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点 (3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。 提问:观察这个函数的图象,它有什么特点? 让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。 抛物线概念:像这样的曲线通常叫做抛物线。 顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点. 三、做一做 1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别? 2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么? 3.将所画的四个函数的图象作比较,你又能发现什么? 在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。 四、归纳、概括 函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想: 函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标是______。 如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么? 让学生观察y=x2、y=2x2的图象,填空; 当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。 图象的这些特点反映了函数的什么性质? 先让学生观察下图,回答以下问题; (1)XA、XB大小关系如何?是否都小于0? (2)yA、yB大小关系如何? (3)XC、XD大小关系如何?是否都大于0? (4)yC、yD大小关系如何? (XA<XB,且XA<0,XB<0;yA>yB;XC<XD,且XC>0,XD>0,yC<yD) 其次,让学生填空。 当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______ 以上结论就是当a>0时,函数y=ax2的性质。 思考以下问题: 观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a<O时,抛物线y=ax2有些什么特点?它反映了当a<O时,函数y=ax2具有哪些性质? 让学生讨论、交流,达成共识,当a<O时,抛物线y=ax2开口向上,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点抛物线上位置最高的点。图象的这些特点,反映了当a<O时,函数y=ax2的性质;当x<0时,函数值y随x的增大而增大;与x>O时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。 |
| |||||||||||||||||||||||||||||||
作业 设计 | 必做 | 教科书P14:3、4 | ||||||||||||||||||||||||||||||
选做 | 教科书P14:8 | |||||||||||||||||||||||||||||||
教学 反思 |
| |||||||||||||||||||||||||||||||
初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试第4课时教学设计: 这是一份初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试第4课时教学设计,共2页。教案主要包含了提出问题,分析问题,解决问题,做一做,课堂练习,小结等内容,欢迎下载使用。
人教版九年级上册22.1 二次函数的图象和性质综合与测试第3课时教案设计: 这是一份人教版九年级上册22.1 二次函数的图象和性质综合与测试第3课时教案设计,共3页。教案主要包含了提出问题,分析问题,解决问题,做一做,练习,小结等内容,欢迎下载使用。
初中人教版22.1 二次函数的图象和性质综合与测试第1课时教学设计: 这是一份初中人教版22.1 二次函数的图象和性质综合与测试第1课时教学设计,共2页。教案主要包含了试一试,提出问题,观察;概括,课堂练习,小结等内容,欢迎下载使用。