人教版九年级上册22.1 二次函数的图象和性质综合与测试第3课时教案设计
展开22.1 二次函数的图象和性质
教学时间 |
| 课题 | 22.1 二次函数的图象和性质 | 课型 | 新授课 | |||||||||||||||||||||||||||||||||||||
教 学 目 标 | 知 识 和 能 力 | 使学生能利用描点法正确作出函数y=ax2+b的图象。 | ||||||||||||||||||||||||||||||||||||||||
过 程 和 方 法 | 让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
| |||||||||||||||||||||||||||||||||||||||||
情 感 态 度 价值观 | 师生互动,学生动手操作,体验成功的喜悦 | |||||||||||||||||||||||||||||||||||||||||
教学重点 | 会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系 | |||||||||||||||||||||||||||||||||||||||||
教学难点 | 正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系 | |||||||||||||||||||||||||||||||||||||||||
教学准备 | 教师 | 多媒体课件 | 学生 | “五个一” | ||||||||||||||||||||||||||||||||||||||
课 堂 教 学 程 序 设 计 | 设计意图 | |||||||||||||||||||||||||||||||||||||||||
一、提出问题 1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。 2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题 问题1:对于前面提出的第2个问题,你将采取什么方法加以研究? (画出函数y=2x2和函数y=2x2的图象,并加以比较) 问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗? 教学要点 1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。 2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象. 3.教师写出解题过程,同学生所画图象进行比较。 解:(1)列表:
(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。 (3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。 (图象略) 问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系? 教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值 之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。 教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。 问题4:函数y=2x2+1和y=2x2的图象有什么联系? 由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。 问题5:现在你能回答前面提出的第2个问题了吗? 让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。 问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗? 完成填空: 当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______. 以上就是函数y=2x2+1的性质。 三、做一做 问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别? 教学要点 1.在学生画函数图象的同时,教师巡视指导; 2.让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。 问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗? 教学要点 1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2); 2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数 值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得 最小值,最小值y=-2。 问题9:在同一直角坐标系中。函数y=-x2+2图象与函数y=-x2的图象有什么关系? 要求学生能够画出函数y=-x2与函数y=-x2+2的草图,由草图观察得出结论:函数y=-1/3x2+2的图象与函数y=-x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=-x2+2的图象可以看成将函数y=-x2的图象向上平移两个单位得到的。 问题10:你能说出函数y=-x2+2的图象的开口方向、对称轴和顶点坐标吗? [函数y=-x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)] 问题11:这个函数图象有哪些性质? 让学生观察函数y=-x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。 四、练习: P7练习。 五、小结 1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质? |
| |||||||||||||||||||||||||||||||||||||||||
作业 设计 | 必做 | 教科书P14:5(1) | ||||||||||||||||||||||||||||||||||||||||
选做 | 练习册P109-114 | |||||||||||||||||||||||||||||||||||||||||
教 学 反 思 |
| |||||||||||||||||||||||||||||||||||||||||
初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试第4课时教学设计: 这是一份初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试第4课时教学设计,共2页。教案主要包含了提出问题,分析问题,解决问题,做一做,课堂练习,小结等内容,欢迎下载使用。
人教版九年级上册22.1 二次函数的图象和性质综合与测试第2课时教案: 这是一份人教版九年级上册22.1 二次函数的图象和性质综合与测试第2课时教案,共2页。教案主要包含了提出问题,范例,做一做,归纳等内容,欢迎下载使用。
初中人教版22.1 二次函数的图象和性质综合与测试第1课时教学设计: 这是一份初中人教版22.1 二次函数的图象和性质综合与测试第1课时教学设计,共2页。教案主要包含了试一试,提出问题,观察;概括,课堂练习,小结等内容,欢迎下载使用。