人教版八年级上册12.3 角的平分线的性质综合训练题
展开12.3 角的平分线的性质
专题一 利用角的平分线的性质解题
1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.
2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.
求证:OB=OC.
3.如图,在Rt△ABC中,∠C=90°,,AD是∠BAC的角平分线,DE⊥AB于点E,AC=3 cm,求BE的长.
专题二 角平分线的性质在实际生活中的应用
4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )
A.在AC、BC两边高线的交点处
B.在AC、BC两边中线的交点处
C.在∠A、∠B两内角平分线的交点处
D.在AC、BC两边垂直平分线的交点处
5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.
6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)
状元笔记
【知识要点】
1.角的平分线的性质
角的平分线上的点到角的两边的距离相等.
2.角的平分线的判定
角的内部到角的两边的距离相等的点在角的平分线上.
【温馨提示】
1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.
2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.
【方法技巧】
1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.
若已知条件存在两条垂线段——直接考虑垂线段相等,
若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,
若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.
2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.
若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;
若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;
若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.
参考答案:
1.证明:∵,
∴AD是的平分线,
∴.
在和中,
∴.
∴.
又∵,∴,∴.
2.证明:∵AO平分∠BAC,OD⊥AB,OE⊥AC,
∴OD=OE,
在Rt△BDO和Rt△CEO中,
∴.
∴OB=OC.
3.解:∵∠C=90°,∴∠BAC+∠B=90°,
又DE⊥AB,∴∠C=∠AED=90°,
又,∴∠A=60°,∠B=30°,
又∵AD平分∠BAC,DC⊥AC,DE⊥AB,
∴DC=DE,
∴cm.
在Rt△DAE和Rt△DBE中,
∴△DAE≌△DBE(AAS),
∴ cm.
4.C 解析:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.
5.∠A的角平分线上,且距A1cm处 角平分线上的点到角两边的距离相等
6.解:作两个角的平分线,交点P就是所求作的点.
初中人教版第十二章 全等三角形12.3 角的平分线的性质课后练习题: 这是一份初中人教版第十二章 全等三角形12.3 角的平分线的性质课后练习题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中12.3 角的平分线的性质同步测试题: 这是一份初中12.3 角的平分线的性质同步测试题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中人教版12.3 角的平分线的性质课后练习题: 这是一份初中人教版12.3 角的平分线的性质课后练习题,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。