专题34函数与几何综合问题(解答题)-2021年中考数学真题分项汇编(原卷版)【全国通用】
展开这是一份专题34函数与几何综合问题(解答题)-2021年中考数学真题分项汇编(原卷版)【全国通用】,共22页。试卷主要包含了解答题等内容,欢迎下载使用。
2021年中考数学真题分项汇编【全国通用】(第01期)
专题34函数与几何综合问题(解答题)
一、解答题
1.(2021·浙江中考真题)在平面直角坐标系中,点A的坐标为,点B在直线上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.
(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.
①若,求证:.
②若,求四边形的面积.
(2)是否存在点B,使得以为顶点的三角形与相似?若存在,求OB的长;若不存在,请说明理由.
2.(2021·浙江中考真题)如图,在平面直角坐标系中,经过原点,分别交轴、轴于,,连结.直线分别交于点,(点在左侧),交轴于点,连结.
(1)求的半径和直线的函数表达式.
(2)求点,的坐标.
(3)点在线段上,连结.当与的一个内角相等时,求所有满足条件的的长.
3.(2021·黑龙江中考真题)如图,一次函数的图象与轴的正半轴交于点,与反比例函数的图像交于两点.以为边作正方形,点落在轴的负半轴上,已知的面积与的面积之比为.
(1)求一次函数的表达式:
(2)求点的坐标及外接圆半径的长.
4.(2021·江苏中考真题)已知四边形是边长为1的正方形,点E是射线上的动点,以为直角边在直线的上方作等腰直角三角形,,设.
(1)如图1,若点E在线段上运动,交于点P,交于点Q,连结,
①当时,求线段的长;
②在中,设边上的高为h,请用含m的代数式表示h,并求h的最大值;
(2)设过的中点且垂直于的直线被等腰直角三角形截得的线段长为y,请直接写出y与m的关系式.
5.(2021·江苏中考真题)在平面直角坐标系中,对于A、两点,若在y轴上存在点T,使得,且,则称A、两点互相关联,把其中一个点叫做另一个点的关联点.已知点、,点在一次函数的图像上.
(1)①如图,在点、、中,点M的关联点是_______(填“B”、“C”或“D”);
②若在线段上存在点的关联点,则点的坐标是_______;
(2)若在线段上存在点Q的关联点,求实数m的取值范围;
(3)分别以点、Q为圆心,1为半径作、.若对上的任意一点G,在上总存在点,使得G、两点互相关联,请直接写出点Q的坐标.
6.(2021·广东中考真题)如图,在平面直角坐标系xOy中,直线分别与x轴,y轴相交于A、B两点,点为直线在第二象限的点
(1)求A、B两点的坐标;
(2)设的面积为S,求S关于x的函数解析式:并写出x的取值范围;
(3)作的外接圆,延长PC交于点Q,当的面积最小时,求的半径.
7.(2021·广西梧州市·中考真题)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,3),顶点为C.平移此抛物线,得到一条新的抛物线,且新抛物线上的点D(3,﹣1)为原抛物线上点A的对应点,新抛物线顶点为E,它与y轴交于点G,连接CG,EG,CE.
(1)求原抛物线对应的函数表达式;
(2)在原抛物线或新抛物线上找一点F,使以点C,E,F,G为顶点的四边形是平行四边形,并求出点F的坐标;
(3)若点K是y轴上的一个动点,且在点B的上方,过点K作CE的平行线,分别交两条抛物线于点M,N,且点M,N分别在y轴的两侧,当MN=CE时,请直接写出点K的坐标.
8.(2021·四川中考真题)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于点,与x轴相交于点B.
(1)求反比例函数的表达式;
(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当是以为底的等腰三角形时,求直线的函数表达式及点C的坐标.
9.(2021·湖南中考真题)如图所示,在平面直角坐标系中,一次函数的图像与函数的图像(记为)交于点A,过点A作轴于点,且,点在线段上(不含端点),且,过点作直线轴,交于点,交图像于点.
(1)求的值,并且用含的式子表示点的横坐标;
(2)连接、、,记、的面积分别为、,设,求的最大值.
10.(2021·江苏中考真题)如图,在平面直角坐标系中.四边形为矩形,点、分别在轴和轴的正半轴上,点为的中点已知实数,一次函数的图像经过点、,反比例函数的图像经过点,求的值.
11.(2021·山东中考真题)如图,在平面直角坐标系中,矩形的两边、分别在坐标轴上,且,,连接.反比例函数()的图象经过线段的中点,并与、分别交于点、.一次函数的图象经过、两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点是轴上一动点,当的值最小时,点的坐标为______.
12.(2021·广西中考真题)如图①,在中,于点,,,点是上一动点(不与点,重合),在内作矩形,点在上,点,在上,设,连接.
(1)当矩形是正方形时,直接写出的长;
(2)设的面积为,矩形的面积为,令,求关于的函数解析式(不要求写出自变量的取值范围);
(3)如图②,点是(2)中得到的函数图象上的任意一点,过点的直线分别与轴正半轴,轴正半轴交于,两点,求面积的最小值,并说明理由.
13.(2021·江苏中考真题)通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用.
(理解)
(1)如图1,,垂足分别为C、D,E是的中点,连接.已知,.
①分别求线段、的长(用含a、b的代数式表示);
②比较大小:__________(填“<”、“=”或“>”),并用含a、b的代数式表示该大小关系.
(应用)
(2)如图2,在平面直角坐标系中,点M、N在反比例函数的图像上,横坐标分别为m、n.设,记.
①当时,__________;当时,________;
②通过归纳猜想,可得l的最小值是__________.请利用图2构造恰当的图形,并说明你的猜想成立.
14.(2021·四川中考真题)已知反比例函数的图象经过点.
(1)求该反比例函数的表达式;
(2)如图,在反比例函数的图象上点A的右侧取点C,作CH⊥x轴于H,过点A作y轴的垂线AG交直线于点D.
①过点A,点C分别作x轴,y轴的垂线,交于B,垂足分别为为F、E,连结OB,BD,求证:O,B,D三点共线;
②若,求证:.
15.(2021·内蒙古中考真题)如图,矩形的两边的长分别为3,8,C,D在y轴上,E是的中点,反比例函数的图象经过点E,与交于点F,且.
(1)求反比例函数的解析式;
(2)在y轴上找一点P,使得,求此时点P的坐标.
16.(2021·湖南中考真题)如图,抛物线经过,两点,与轴交于点,连接.
(1)求该抛物线的函数表达式;
(2)如图2,直线:经过点A,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值;
(3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.
17.(2021·湖北中考真题)抛物线交轴于,两点(在的左边).
(1)的顶点在轴的正半轴上,顶点在轴右侧的抛物线上.
①如图(1),若点的坐标是,点的横坐标是,直接写出点,的坐标;
②如图(2),若点在抛物线上,且的面积是12,求点的坐标;
(2)如图(3),是原点关于抛物线顶点的对称点,不平行轴的直线分别交线段,(不含端点)于,两点,若直线与抛物线只有一个公共点,求证的值是定值.
18.(2021·湖南中考真题)已知二次函数.
(1)若,,求方程的根的判别式的值;
(2)如图所示,该二次函数的图像与x轴交于点、,且,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足 ,.
①求证:;
②连接BC,过点D作于点E,点在y轴的负半轴上,连接AF,且,求的值.
19.(2021·内蒙古中考真题)如图,在平面直角坐标系中,抛物线经过坐标原点,与x轴正半轴交于点A,点是抛物线上一动点.
(1)如图1,当,,且时,
①求点M的坐标:
②若点在该抛物线上,连接OM,BM,C是线段BM上一动点(点C与点M,B不重合),过点C作,交x轴于点D,线段OD与MC是否相等?请说明理由;
(2)如图2,该抛物线的对称轴交x轴于点K,点在对称轴上,当,,且直线EM交x轴的负半轴于点F时,过点A作x轴的垂线,交直线EM于点N,G为y轴上一点,点G的坐标为,连接GF.若,求证:射线FE平分.
20.(湖南省永州市2021年中考真题数学试卷)已知关于x的二次函数(实数b,c为常数).
(1)若二次函数的图象经过点,对称轴为,求此二次函数的表达式;
(2)若,当时,二次函数的最小值为21,求b的值;
(3)记关于x的二次函数,若在(1)的条件下,当时,总有,求实数m的最小值.
21.(2021·四川中考真题)如图,抛物线与x轴交于A、B两点,与y轴交于C点,,.
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大.求出点P的坐标
(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q.使点P、B、M、Q为顶点的四边形是平行四边形,若存在.请直接写出Q点的坐标;若不存在,请说明理由.
22.(四川省资阳市2021年中考数学试卷)抛物线与x轴交于A、B两点,与y轴交于点C,且.
(1)求抛物线的解析式;
(2)如图1,点P是抛物线上位于直线上方的一点,与相交于点E,当时,求点P的坐标;
(3)如图2,点D是抛物线的顶点,将抛物线沿方向平移,使点D落在点处,且,点M是平移后所得抛物线上位于左侧的一点,轴交直线于点N,连结.当的值最小时,求的长.
23.(2021·黑龙江中考真题)如图,抛物线与轴交于除原点和点,且其顶点关于轴的对称点坐标为.
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点,使得抛物线上的任意一点到定点的距离与点到直线的距离总相等.
①证明上述结论并求出点的坐标;
②过点的直线与抛物线交于两点.证明:当直线绕点旋转时,是定值,并求出该定值;
(3)点是该抛物线上的一点,在轴,轴上分别找点,使四边形周长最小,直接写出的坐标.
24.(2021·湖北中考真题)在平面直角坐标系中,抛物线与轴交于点和点,顶点坐标记为.抛物线的顶点坐标记为.
(1)写出点坐标;
(2)求,的值(用含的代数式表示);
(3)当时,探究与的大小关系;
(4)经过点和点的直线与抛物线,的公共点恰好为3个不同点时,求的值.
25.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.
(1)求,,三点的坐标并直接写出直线,的函数表达式;
(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.
①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;
②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.
26.(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如……都是“雁点”.
(1)求函数图象上的“雁点”坐标;
(2)若抛物线上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当时.
①求c的取值范围;
②求的度数;
(3)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),P是抛物线上一点,连接,以点P为直角顶点,构造等腰,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.
27.(2021·湖南中考真题)如图,在平面直角坐标系中,平行四边形的边与y轴交于E点,F是的中点,B、C、D的坐标分别为.
(1)求过B、E、C三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线上;
(3)设过F与平行的直线交y轴于Q,M是线段之间的动点,射线与抛物线交于另一点P,当的面积最大时,求P的坐标.
28.(2021·湖南中考真题)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且,,,抛物线的对称轴与直线BC交于点M,与x轴交于点N.
(1)求抛物线的解析式;
(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与相似?若存在,求出点P的坐标,若不存在,请说明理由.
(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.
(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰?若存在,求出点Q的坐标,若不存在,请说明理由.
29.(2021·甘肃中考真题)如图,在平面直角坐标系中,抛物线与坐标轴交于两点,直线交轴于点.点为直线下方抛物线上一动点,过点作轴的垂线,垂足为分别交直线于点.
(1)求抛物线的表达式;
(2)当,连接,求的面积;
(3)①是轴上一点,当四边形是矩形时,求点的坐标;
②在①的条件下,第一象限有一动点,满足,求周长的最小值.
30.(2021·湖南中考真题)如图,在平面直角坐标系中,抛物线:经过点和.
(1)求抛物线的对称轴.
(2)当时,将抛物线向左平移2个单位,再向下平移1个单位,得到抛物线.
①求抛物线的解析式.
②设抛物线与轴交于,两点(点在点的右侧),与轴交于点,连接.点为第一象限内抛物线上一动点,过点作于点.设点的横坐标为.是否存在点,使得以点,,为顶点的三角形与相似,若存在,求出的值;若不存在,请说明理由.
31.(2021·江苏中考真题)如图,二次函数(是实数,且)的图像与轴交于、两点(点在点的左侧),其对称轴与轴交于点,已知点位于第一象限,且在对称轴上,,点在轴的正半轴上,.连接并延长交轴于点,连接.
(1)求、、三点的坐标(用数字或含的式子表示);
(2)已知点在抛物线的对称轴上,当的周长的最小值等于,求的值.
32.(2021·贵州中考真题)如图,抛物线与轴交于A、B(3,0)两点,与轴交于点C(0,-3),抛物线的顶点为D.
(1)求抛物线的解析式;
(2)点P在抛物线的对称轴上,点Q在轴上,若以点P、Q、B、C为顶点,BC为边的四边形为平行四边形,请直接写出点P、Q的坐标;
(3)已知点M是轴上的动点,过点M作的垂线交抛物线于点G,是否存在这样的点M,使得以点A、M、G为顶点的三角形与△BCD相似,若存在,请求出点M的坐标;若不存在,请说明理由.
33.(山东省淄博市2021年中考数学试题)如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,连接.
(1)若,求抛物线对应的函数表达式;
(2)在(1)的条件下,点位于直线上方的抛物线上,当面积最大时,求点的坐标;
(3)设直线与抛物线交于两点,问是否存在点(在抛物线上).点(在抛物线的对称轴上),使得以为顶点的四边形成为矩形?若存在,求出点的坐标;若不存在,说明理由.
34.(2021·四川中考真题)如图,在平面直角坐标系中,抛物线与x轴相交于O,A两点,顶点P的坐标为.点B为抛物线上一动点,连接,过点B的直线与抛物线交于另一点C.
(1)求抛物线的函数表达式;
(2)若点B的横坐标与纵坐标相等,,且点C位于x轴上方,求点C的坐标;
(3)若点B的横坐标为t,,请用含t的代数式表示点C的横坐标,并求出当时,点C的横坐标的取值范围.
35.(2021·湖北中考真题)如图1,已知,中,动点P从点A出发,以的速度在线段上向点C运动,分别与射线交于E,F两点,且,当点P与点C重合时停止运动,如图2,设点P的运动时间为,与的重叠部分面积为,y与x的函数关系由和两段不同的图象组成.
(1)填空:①当时,______;
②______;
(2)求y与x的函数关系式,并写出x的取值范围;
(3)当时,请直接写出x的取值范围.
36.(2021·湖南中考真题)如图,已知二次函数的图象经过点且与轴交于原点及点.
(1)求二次函数的表达式;
(2)求顶点的坐标及直线的表达式;
(3)判断的形状,试说明理由;
(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.
37.(2021·黑龙江中考真题)如图,在平面直角坐标系中,的边在轴上,,且线段的长是方程的根,过点作轴,垂足为,,动点以每秒1个单位长度的速度,从点出发,沿线段向点运动,到达点停止.过点作轴的垂线,垂足为,以为边作正方形,点在线段上,设正方形与重叠部分的面积为,点的运动时间为秒.
(1)求点的坐标;
(2)求关于的函数关系式,并写出自变量的取值范围;
(3)当点落在线段上时,坐标平面内是否存在一点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.
38.(2021·江苏中考真题)在平面直角坐标系中,O为坐标原点,直线与x轴交于点B,与y轴交于点C,二次函数的图象过B、C两点,且与x轴交于另一点A,点M为线段上的一个动点,过点M作直线l平行于y轴交于点F,交二次函数的图象于点E.
(1)求二次函数的表达式;
(2)当以C、E、F为顶点的三角形与相似时,求线段的长度;
(3)已知点N是y轴上的点,若点N、F关于直线对称,求点N的坐标.
相关试卷
这是一份专题33几何综合压轴问题(解答题)-2021年中考数学真题分项汇编【全国通用】,文件包含专题33几何综合压轴问题解答题-2021年中考数学真题分项汇编解析版全国通用第01期docx、专题33几何综合压轴问题解答题-2021年中考数学真题分项汇编原卷版全国通用第01期docx等2份试卷配套教学资源,其中试卷共150页, 欢迎下载使用。
这是一份专题34函数与几何综合问题(解答题)-2021年中考数学真题分项汇编(原卷版+解析版)【全国通用】,文件包含专题34函数与几何综合问题解答题-2021年中考数学真题分项汇编解析版全国通用第01期docx、专题34函数与几何综合问题解答题-2021年中考数学真题分项汇编原卷版全国通用第01期docx等2份试卷配套教学资源,其中试卷共149页, 欢迎下载使用。
这是一份专题33几何综合压轴问题(解答题)-2021年中考数学真题分项汇编(原卷版+解析版)【全国通用】,文件包含专题33几何综合压轴问题解答题-2021年中考数学真题分项汇编解析版全国通用第01期docx、专题33几何综合压轴问题解答题-2021年中考数学真题分项汇编原卷版全国通用第01期docx等2份试卷配套教学资源,其中试卷共150页, 欢迎下载使用。