第九章 第八节 超几何分布与二项分布-备战2022年(新高考)数学一轮复习考点讲解+习题练习学案
展开
这是一份第九章 第八节 超几何分布与二项分布-备战2022年(新高考)数学一轮复习考点讲解+习题练习学案,文件包含第九章第八节超几何分布与二项分布原卷版docx、第九章第八节超几何分布与二项分布解析版docx等2份学案配套教学资源,其中学案共32页, 欢迎下载使用。
1.条件概率及其性质
(1)条件概率的定义
对于两个事件A和B,在已知事件B发生的条件下事件A发生的概率,称为事件B发生的条件下事件A的条件概率.
(2)条件概率的求法
求条件概率除了可借助定义中的公式,还可以借助古典概率公式,即P(B|A)=eq \f(PAB,PA).
2.相互独立事件
(1)对于事件A,B,若A的发生与B的发生互不影响,则称A,B相互独立.
(2)若A与B相互独立,则P(AB)=P(A)P(B).
(3)若A与B相互独立,则A与eq \x\t(B),eq \x\t(A)与B,eq \x\t(A)与eq \x\t(B)也都相互独立.
(4)若P(AB)=P(A)P(B),则A,B相互独立.
3.二项分布
在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Ceq \\al(k,n)pk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p).
4.两点分布与二项分布的均值、方差
(1)若随机变量X服从两点分布,则E(X)=p,V(X)=p(1-p).
(2)若X~B(n,p),则E(X)=np,V(X)=np(1-p).
5.超几何分布
一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么
P(X=r)=eq \f(C\\al(r,M)C\\al(n-r,N-M),C\\al(n,N)) (r=0,1,2,…,l).
即
其中l=min(M,n),且n≤N,M≤N,n,M,N∈N*.
如果一个随机变量X的概率分布具有上表的形式,则称随机变量X服从超几何分布.
课前检测
1.天气预报,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为( )
A.0.2 B.0.3 C.0.38 D.0.56
2.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )
A.eq \f(3,10) B.eq \f(1,3) C.eq \f(3,8) D.eq \f(2,9)
3.两个实习生每人加工一个零件,加工成一等品的概率分别为eq \f(2,3)和eq \f(3,4),两个零件能否被加工成一等品相互独立,则这两个零件中恰好有一个一等品的概率为( )
A.eq \f(1,2) B.eq \f(5,12) C.eq \f(1,4) D.eq \f(1,6)
4.一只袋内装有m个白球,n-m(n>m,m,n∈N*)个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X个白球,下列概率等于eq \f ((n-m)Aeq \\al(2,m),Aeq \\al(3,n))的是( )
A.P(X=3) B.P(X≥2)
C.P(X≤3) D.P(X=2)
5.计算机毕业考试分为理论与操作两部分,每部分考试成绩只记“合格”与“不合格”,只有两部分考试都“合格”者,才给颁发计算机“合格证书”.甲、乙两人在理论考试中“合格”的概率依次为eq \f(4,5),eq \f(2,3),在操作考试中“合格”的概率依次为eq \f(1,2),eq \f(5,6),所有考试是否合格相互之间没有影响.则甲、乙进行理论与操作两项考试后,恰有一人获得“合格证书”的概率为________.
课中讲解
考点一.条件概率
例1.(1)(2019·合肥模拟)将三颗骰子各掷一次,记事件A为“三个点数都不同”,B为“至少出现一个6点”,则条件概率P(A|B)=__________,P(B|A)=________.
(2)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.
变式1.(1)一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为( )
A.eq \f(2,3) B.eq \f(5,12) C.eq \f(5,9) D.eq \f(7,9)
(2)在100件产品中有95件合格品,5件不合格品,现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.
考点二.相互独立事件的概率
例1.(1)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为________.
(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.
变式1.(1)(变设问)保持本例(2)条件不变,则该选手恰好回答了5个问题就晋级下一轮的概率为________.
(2).(变设问)保持本例(2)条件不变,则该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.
例2. 某社区举办“环保我参与”有奖问答比赛活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是eq \f(3,4),甲、丙两个家庭都回答错误的概率是eq \f(1,12),乙、丙两个家庭都回答正确的概率是eq \f(1,4).若各家庭回答是否正确互不影响.
(1)求乙、丙两个家庭各自回答正确这道题的概率;
(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.
变式2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为eq \f(1,2),eq \f(1,3),eq \f(1,4).
(1)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列;
(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
考点三.独立重复实验与二项分布
例1.九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:
(1)若购进这批九节虾35 000 g,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);
(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X,求X的分布列.
变式1. (2020·全国100所名校最新示范卷)某社区组织开展“扫黑除恶”宣传活动,为鼓励更多的人积极参与到宣传活动中来,宣传活动现场设置了抽奖环节.在盒中装有9张大小相同的精美卡片,卡片上分别印有“扫黑除恶利国利民”或“普法宣传人人参与”图案.抽奖规则:参加者从盒中抽取卡片两张,若抽到两张分别是“普法宣传人人参与”和“扫黑除恶利国利民”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.活动开始后,一位参加者问:“盒中有几张‘普法宣传人人参与’卡?”主持人答:“我只知道,从盒中抽取两张都是‘扫黑除恶利国利民’卡的概率是eq \f(1,6).”
(1)求抽奖者获奖的概率;
(2)为了增加抽奖的趣味性,规定每个抽奖者先从装有9张卡片的盒中随机抽出1张不放回,再用剩下8张卡片按照之前的抽奖规则进行抽奖,现有甲、乙、丙三人依次抽奖,用X表示获奖的人数,求X的概率分布和均值.
例2.0(2019·天津)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为eq \f(2,3),假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的概率分布和均值;
(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.
变式2.(1)甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为( )
6
(2)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为eq \f(1,2),且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率为多少?
考点四. 超几何分布的应用
例1. PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2018年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值的频数分布如下表所示:
(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;
(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的概率分布.
变式1.某项大型赛事需要从高校选拔青年志愿者,某大学学生实践中心积极参与,在8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X,求X的概率分布及均值.
变式2.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;
(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和均值.
课后习题
单选题
1.(2020·汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为eq \f(2,3)和eq \f(3,4),甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )
A.eq \f(3,4) B.eq \f(2,3) C.eq \f(5,7) D.eq \f(5,12)
2.(2019·石家庄模拟)袋子中装有大小、形状完全相同的2个白球和2个红球,现从中不放回地摸取两个球,已知第一次摸到的是红球,则第二次摸到白球的概率为( )
A.eq \f(1,3) B.eq \f(2,3) C.eq \f(1,2) D.eq \f(1,5)
3.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )
A.eq \f(C\\al(3,5)C\\al(1,4),C\\al(4,5)) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,9)))3×eq \f(4,9)
C.eq \f(3,5)×eq \f(1,4) D.Ceq \\al(1,4)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,9)))3×eq \f(4,9)
4.在某次人才招聘会上,假定某毕业生赢得甲公司面试机会的概率为eq \f(2,3),赢得乙、丙两公司面试机会的概率均为eq \f(1,4),且三个公司是否让其面试是相互独立的,则该毕业生只赢得甲、乙两个公司面试机会的概率为( )
A.eq \f(1,16) B.eq \f(1,8) C.eq \f(1,4) D.eq \f(1,2)
5.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )
A.eq \f(1,4)B.eq \f(8,9)
C.eq \f(1,16)D.eq \f(5,32)
出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )
A.eq \f(C\\al(3,5)C\\al(1,4),C\\al(4,5)) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,9)))3×eq \f(4,9)
C.eq \f(3,5)×eq \f(1,4) D.Ceq \\al(1,4)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,9)))3×eq \f(4,9)
7.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小明和小华两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小华获胜的概率是( )
A.eq \f(1,27) B.eq \f(2,27)
C.eq \f(8,81) D.eq \f(17,81)
8.(2020·濮阳模拟)如图12.61所示,已知电路中4个开关闭合的概率都是eq \f(1,2),且是相互独立的,则灯亮的概率为( )
图12.61
A.eq \f(3,16) B.eq \f(3,4)
C.eq \f(13,16) D.eq \f(1,4)
二.多选题
9.(多选)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是( )
A.P(B)=eq \f(2,5)
B.P(B|A1)=eq \f(5,11)
C.事件B与事件A1相互独立
D.A1,A2,A3是两两互斥的事件
10.已知X+Y=8,若X~B(10,0.6),则下列说法正确的是( )
A.E(Y)=2 B.E(Y)=6
C.D(Y)=2.4 D.D(Y)=5.6
11.下列命题中,正确的命题的是( )
A.已知随机变量服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=eq \f(2,3)
B.将一组数据中的每个数据都加上同一个常数后,方差恒不变
C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1
相关学案
这是一份第八章 第八节 双曲线-2022届(新高考)数学一轮复习考点讲解+习题练习学案,文件包含第八章第八节双曲线解析版docx、第八章第八节双曲线原卷版docx等2份学案配套教学资源,其中学案共38页, 欢迎下载使用。
这是一份第二章 第八节 对数函数-2022届(新高考)数学一轮复习考点讲解+习题练习学案,文件包含第二章第八节对数函数原卷版docx、第二章第八节对数函数解析版docx等2份学案配套教学资源,其中学案共38页, 欢迎下载使用。
这是一份第九章 第五节 排列组合-备战2022年(新高考)数学一轮复习考点讲解+习题练习学案,文件包含第九章第五节排列组合原卷版docx、第九章第五节排列组合解析版docx等2份学案配套教学资源,其中学案共24页, 欢迎下载使用。