初中数学湘教版八年级下册第2章 四边形2.7 正方形教案
展开2.学会识别正方形。
3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。
教学重点:正方形特殊特征与性质的探索过程。
教学难点:数学说理能力的培养。
教学准备:正方形纸张、剪刀。
教学过程
一、提问。
观察正方形有哪些特征?
边_________角__________对角线_________ 。
进而导入课题:正方形。
二、探索,概括。
1.探索。
观察正方形是否轴对称图形?是否中心对称图形?
正方形可以看作为_______的菱形;
正方形可以看作为_______的矩形。
(让学生探索、讨论,培养学生的合作能力与意识,也可指名学生讲讲他的发现。)
2.概括。
正方形是中心对称图形,也是轴对称图形。
正方形可以看作为有一个角是直角的菱形;
正方形可以看作为有一组邻边相等的矩形。
三、应用举例。
例3 如图,在正方形ABCD中,求∠ABD、∠DAC、∠DOC的度数。
(此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。)
四、巩固练习。
1.如果要用给定长度的篱笆围成一个最大面积的四边形区域,那么应当把这区域围成怎样的四边形?
2.在下列图中,有多少个正方形?有多少个矩形?
五、看谁做的又快又正确?
1.用纸剪出一个正方形,与你的同伴比一比,看谁又快又正确?
六、课堂小结。
这节课你有什么收获?学到了什么?有什么疑问提出来?
七、布置作业。
3.4正方形(二)
教学目的:1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.
2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.
教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.
教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.
教学过程:
一、课堂引入
1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.
正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意思:
(1)有一组邻边相等的平行四边形 (菱形)
(2)有一个角是直角的平行四边形 (矩形)
2.【问题】正方形有什么性质?
由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.
所以,正方形具有矩形的性质,同时又具有菱形的性质.
二、例题讲解
例1、求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O。
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.
证明:∵ 四边形ABCD是正方形,
∴ AC=BD, AC⊥BD,
AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).
∴ △ABO、△BCO、△CDO、△DAO都是等腰直角三角形,
并且 △ABO ≌△BCO≌△CDO≌△DAO.
例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.
分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.
证明:∵ 四边形ABCD是正方形,
∴ ∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).
又 DG⊥AE, ∴ ∠EAO+∠AEO=∠EDG+∠AEO=90°.
∴ ∠EAO=∠FDO.
∴ △AEO ≌△DFO.
∴ OE=OF.
三、课堂小结:
本节的主要内容是正方形概念、性质和判定方法.重点是正方形定义.
正方形不仅是特殊的平行四边形,而且是特殊的矩形,和特殊的菱形,学好正方形有助于巩固矩形、菱形各自特有的性质和判定.
掌握正方形定义是学好本节的关键.
正方形是在平行四边形的前提下定义的,它包含两层意思:
①有一组邻边相等的平行四边形 (菱形)
②有一个角是直角的平行四边形 (矩形)
(2)因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,所以正方形:
边:对边平行,四边相等; 角:四个角都是直角;
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
(3)对于怎样判定一个四边形是正方形,因为层次比较多,不必分析的太具体,只要强调能判定一个四边形是矩形,又能判定这个矩形也是菱形,或者先判定四边形是菱形,再判定这个菱形也是矩形,就可以判定这个四边形是正方形,实际上就是根据正方形定义来判定.
四、课堂练习
1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2.如下左图,E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD与∠ECD的度数.已知:如下右图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.
数学2.7 正方形教学设计: 这是一份数学2.7 正方形教学设计,共3页。
湘教版八年级下册2.7 正方形教案设计: 这是一份湘教版八年级下册2.7 正方形教案设计,共4页。教案主要包含了讲授新课,课时小结等内容,欢迎下载使用。
数学湘教版2.7 正方形教案: 这是一份数学湘教版2.7 正方形教案,共5页。教案主要包含了合作探究,导入新课,实践应用,探究新知,继续探究,学习新知,随堂练习,巩固深化,课堂总结,发展潜能,布置作业,专题突破等内容,欢迎下载使用。