初中数学湘教版九年级下册第1章 二次函数1.5 二次函数的应用教案
展开课题:2.3二次函数的应用(1)
2.3.1 把握变量之间的的依赖关系
教学目标:
1、经历数学建模的基本过程。
2、会运用二次函数求实际问题中的最大值或最小值。
3、体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。
教学重点和难点:
重点:二次函数在最优化问题中的应用。
难点:例1是从现实问题中建立二次函数模型,学生较难理解。
教学设计:
一、创设情境、提出问题
动脑筋
一座拱桥的纵截面是抛物线的一段,拱桥的跨度是4.9米,水面宽4米时,拱顶离水面2米,想了解水面宽度变化时,拱顶离水面的高度怎样变化?
设问:
①这是什么样的函数?
②怎样建立直角坐标系比较简便?
③如何设函数的解析式?如何确定系数?
④自变量的取值范围是什么?
⑤当水面宽3米时,拱顶离水面高多少米?
⑥你是否体会到:从实际问题建立起函数模型,对于解决问题是有效的?
二、观察分析,研究问题
演示动画,引导学生观察、思考、发现:当矩形周长为8,它的一边变化时,另一边和面积也随之改变。深入探究:如设矩形的一边长为x米,则另一边长为(4-x)米,再设面积为ym2,则它们的函数关系式为
并当x =2时(属于范围)即当设计为正方形时,面积最大=4(m2)(为什么)
引导学生总结,确定问题的解决方法:在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。
步骤:
第一步设自变量;
第二步建立函数的解析式;
第三步确定自变量的取值范围;
第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。
三、例练应用,解决问题
例1 某厂生产两种产品,价格分别为P1=4万元/吨,P2=8万元/吨;
第一种产品的产量为Q1(吨),第二种产品的产量为1吨,成本函数为:
(1)当Q1=1吨时,成本C是多少?
(2)求利润L与Q1的函数关系式;
(3)当Q1=0.8吨时,利润L是多少?
(4)当Q1=1吨时,利润L是多少?
四、知识整理,形成系统
这节课学习了用什么知识解决哪类问题?
解决问题的一般步骤是什么?应注意哪些问题?
学到了哪些思考问题的方法?
五、布置作业:书P43 1、2 P49 A 1、2
教学后记:
初中数学湘教版九年级下册1.5 二次函数的应用教案设计: 这是一份初中数学湘教版九年级下册1.5 二次函数的应用教案设计,共5页。
初中数学湘教版九年级下册1.5 二次函数的应用教学设计: 这是一份初中数学湘教版九年级下册1.5 二次函数的应用教学设计,共4页。教案主要包含了教学目标,教学重点,教学过程等内容,欢迎下载使用。
初中数学湘教版九年级下册1.5 二次函数的应用教案: 这是一份初中数学湘教版九年级下册1.5 二次函数的应用教案,共5页。