初中数学沪科版七年级下册9.2 分式的运算教案设计
展开分式的加减法
一、教学目标
掌握通分和最简公分母的概念,以及分式加减的法则,会简单的计算.
二、教学重点
(1)同分母分式的加减运算法则中,“把分子相加减”的理解与应用.
(2)对异分母分式准确的通分(单项式).
(3)准确计算出分式的最简结果.
三、教学难点
(1)同分母分式的加减运算法则中,“把分子相加减”的理解与应用.
(2)当分式的分母是互为相反数时,符号的处理方法.
四、教学过程
问题1.
(1)把分数通分.
解:,,
(2).什么叫分数的通分?
把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分.
和分数通分类似,把几个异分母的分式化成与原来的分式相等的同分母的分式叫做分式的通分.
通分的关键是确定几个分式的公分母.
例1 通分
(1),; (2),;
(3),.
小结:把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分.分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变.通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母.确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母.
问题2.会计算下列算式吗?
(1) (2)
掌握分母是单项式的同分母分式加减法则.
问题2:若把上述两个算式中的分母用不能表示零的字母来代替,你还会运算吗?
猜一猜:同分母的分式应该如何加减?
得出:
同分母的分式相加减,分母不变,分子相加减
巩固练习(以下练习分母均不为0)
(1) (2) (3) (4)
掌握分母是多项式的同分母分式的加减法则
例2.计算(本环节是这节课的重点,突破办法:由浅入深,层层推进)
(2)
巩固练习:
(1) (2) (3)
类比探索,掌握分母是单项式的异分母分式加减法则
问题3:异分母的分数如何加减呢?
例如:
问题4:若把分母中的4用字母a来代替该如何进行加减呢?
例如:
异分母分数加减法的法则:先通分,把异分母的分数化为同分母的分数.然后按照同分母分数的加减法则来计算
议一议:
小明认为, 只要把异分母的分式化成同分母的分式, 异分母的分式的问题就变成了同分母分式的加减问题. 小亮同意小明的这种看法, 但他俩的具体做法不同
小明:+=+ 小亮:+=+
=+== =+=.
你对这两种做法有何评论?与同伴交流.
通过讨论,为了便于计算,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为他们的共同分母.
以为例讲解如何找最简公分母
最后确定最简公分母(单项式)的方法:
(1)系数——各分母系数的最小公倍数;
(2)字母——各分母所含的所有字母;
(3)指数——分母中相同字母的最高指数;
巩固练习:
例3.求下列各组分式的最简公分母
例4.(1)
相应练习:(1) (2)
掌握分母是多项式的异分母分式的加减法则
例5:(2)
相应的练习
初中数学沪科版七年级下册9.2 分式的运算教案设计: 这是一份初中数学沪科版七年级下册9.2 分式的运算教案设计,共3页。
沪科版七年级下册9.2 分式的运算教案及反思: 这是一份沪科版七年级下册9.2 分式的运算教案及反思,共3页。教案主要包含了教学目标,教学重点,教学难点,教学过程等内容,欢迎下载使用。
沪科版七年级下册9.2 分式的运算教案: 这是一份沪科版七年级下册9.2 分式的运算教案,共2页。教案主要包含了素质教育目标,学法引导,教学设想,教学步骤等内容,欢迎下载使用。