数学七年级下册7.1 不等式及其基本性质教案设计
展开《不等式及其基本性质》
【教学内容】
课本上不等式的五个基本性质,并学会应用.
【教学目标】
1、掌握不等式的五个基本性质并且能正确应用.
2、经历探究不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力.
3、开展研究性学习,使学生初步体会学习不等式基本性质的价值.
【重点难点】
重点:理解不等式的五个基本性质.
难点:对不等式的基本性质3的认识.
【教学方法】
本节课采用“类比-实验-交流”的教学方法.
【教学过程】
一、回顾交流.
1、等式的基本性质
解一元一次方程的基本步骤
2、问题牵引:
用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3, 5+2 3+2 , 5-2 3-2 ;
(2)–1<3 , -1+2 3+2 , -1-3 3-3 ;
结果:
(1)>、>(2)<、<
根据发现的规律填空:
当不等式两边加或减去同一个数(正数或负数)时,不等号的方向______
3、继续探究,接着又出示(3)、(4)题:
(3)6>2, 6×5 2×5 ,6×(-5) 2×(-5),
(4)2<3,(-2)×6 3×6 ,(-2)×(-6) 3×(-6).
得到:
当不等式的两边同乘以一个正数时,不等号的方向不变;
当不等式的两边同乘以一个负数时,不等号的方向改变.
总结出不等式的性质:
不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.
字母表示为:如果a>b,那么a±c > b±c
不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.
字母表示为:如果a>b,c>0那么ac > bc,
不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.
字母表示为:如果a>b,c<0那么ac < bc,
不等式的对称性:如果a>b,那么b<a
不等式传递性:如果a>b,b>c,那么a>c
二、范例学习,应用所学.
1、利用不等式的性质解下列不等式.
(1)x-7>26 (2)3x<2x+1
(3)x﹥50 (4)-4x﹥3
2、逐题分析得出结果.
(1)x-7>26
分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或x﹤a的形式.
解:(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得
x-7+7﹥26+7
x﹥33
(2)3x<2x+1
为了使不等式3x<2x+1中不等号的一边变为x,根据不等式的性质1,不等式两边都减去2x,不等号的方向不变.
3x-2x﹤2x+1-2x
x﹤1
通过两小题得到:解不等式时也可以“移项”,即把不等式的一边的某项变号后移到另一边,而不改变不等号的方向.
(3)x ﹥50
为了使不等式 x﹥50中不等号的一边变为x,根据不等式的性质2,不等式的两边都乘
不等号的方向不变,得
x﹥75
(4)-4x﹥3
为了使不等式-4x﹥3中的不等号的一边变为x,根据不等式的性质3,不等式两边都除以-4,
不等号的方向改变,得x<-
通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向.
三、课堂探究.
已知a<0,试比较2a与a的大小.
四、课堂小结提问.
不等式性质的作用.
数学七年级下册第7章 一元一次不等式和不等式组7.1 不等式及其基本性质教案: 这是一份数学七年级下册第7章 一元一次不等式和不等式组7.1 不等式及其基本性质教案,共3页。
2020-2021学年10.4 平移教案设计: 这是一份2020-2021学年10.4 平移教案设计,共2页。教案主要包含了创设情境 引入课题,自主活动 实践感知,巩固练习 继续探究,归纳小结等内容,欢迎下载使用。
初中数学沪科版七年级下册7.1 不等式及其基本性质教学设计: 这是一份初中数学沪科版七年级下册7.1 不等式及其基本性质教学设计,共3页。教案主要包含了学习目标,学习过程等内容,欢迎下载使用。