北京课改版七年级下册9.1 总体与样本教案及反思
展开10.1总体与样本(1)【教学目标】使学生了解简单的随机抽样的操作过程,理解简单的随机抽样的含义,能用随机抽样的方法从总体中抽取样本。【重点、难点】:用简单的随机抽样的方法从总体中抽取样本。【教学过程】:一、用例子说明有些调查不适宜做普查,只适宜做抽样调查例1:妈妈为了知道饼熟了没有,从刚出锅的饼上切下一小块尝尝,如果这一小块熟了,那么可以估计整张饼熟了。例2:环境检测中心为了了解一个城市的空气质量情况,会在这个城市中分散地选择几个点,从各地采集数据。例3:农科站要了解农田中某种病虫害的灾情,会随意地选定几块地,仔细地检查虫卵数,然后估计一公顷农田大约平均有多少虫卵,会不会发生病虫害。例4:某部队要想知道一批炮弹的杀伤半径,会随意地从中选取一些炮弹进行发射实验,以考察这一批炮弹的杀伤半径。以上的例子都不适宜做普查,而适宜做抽样调查。二、如何从总体中选取样本1、什么是简单的随机抽样上面的例子不适宜做普查,而需要做抽样调查,那么应该如何选取样本,使它具有代表性,而能较好地反映总体的情况呢?要想使样本具有代表性,不偏向总体中的某些个性,有一个对每个个体都公平的方法,决定哪些个体进入样本,这种思想的抽样方法我们把它称为简单的随机抽样2、用简单的随机抽样方法来选取一些样本。假设总体是某年级300名学生的数学考试成绩,我们已经按照学号顺序排列如下:97 92 89 86 93 73 74 72 60 98 70 90 89 90 91 80 69 92 70 64 92 83 89 93 72 77 79 75 80 93 93 72 87 76 86 82 85 82 87 86 81 88 74 87 92 88 75 92 89 82 88 86 85 76 79 92 89 84 93 75 93 84 87 90 88 90 80 89 72 78 73 79 85 78 77 91 92 82 77 86 90 78 86 90 83 73 75 67 76 55 70 76 77 91 70 84 87 62 91 67 88 78 82 77 87 75 84 70 80 66 80 87 60 78 76 89 81 88 73 75 95 68 80 70 78 71 80 65 82 83 62 72 80 70 83 68 74 67 67 80 90 70 82 85 96 70 73 86 87 81 70 69 76 68 70 68 71 79 71 87 60 64 62 81 69 63 66 63 64 53 61 41 58 60 84 62 63 76 82 76 61 72 66 80 90 93 87 60 82 85 77 84 78 65 62 75 64 70 68 66 99 81 65 98 87 100 64 68 82 73 66 72 96 78 74 52 92 83 85 60 67 94 88 86 89 93 99 100 79 85 68 60 74 70 78 65 68 68 79 77 90 55 80 77 67 65 87 81 67 75 57 75 90 86 66 83 68 84 68 85 74 98 89 67 79 77 69 89 68 55 58 63 77 78 69 67 80 82 83 98 94 96 80 79 68 70 57 74 96 70 78 80 87 85 93 80 88 67 70 93。用简单抽样的方法选取三个样本,每个样本含有5个个体,老师示范完成了第一个样本的选取,请同学们继续完成第二和第三个样本的选取。第一个样本:第二个样本:第三个样本:课堂活动:用简单的随机抽样方法从300名学生的数学成绩的总体中选取两个样本,每个样本含有20个个体。第一个样本:第二个样本:同学们从刚才的活动中可以体会到,抽样之前,同学们不能预测到哪些个体会被抽中,像这样不能够预先预测结果的特性叫做随机性。所以统计学家把这种抽样的方法叫做随机抽样。三、小结本节课我们学习了什么是随机抽样,如何从总体中随机选取一些样本,通过对这些样本的研究,可以反映总体中的特性。10.1总体与样本(2)【教学目标】使学生知道在抽样调查时,所选取的样本必须具有代表性,并能掌握科学的抽样方法,即具有代表性,样本容量必须足够大避免遗漏某一群体,使得所抽取的样本比较合理,能比较准确地反映总体的特征。【重点难点】重点、难点:判断所选取的样本是否具有代表性,是否能够反映总体的特征。【教学过程】一、用例子说明如何进行抽样比较合理例1、老师布置给每个小组一个任务,用抽样调查的方法估计全班同学的平均身高.坐在教室最后面的小胖为了争速度,立即就近向他周围的三个同学作调查,计算出他们四个人的平均身高后就举手向老师示意已经完成任务了. 分析 因为小胖他们四个坐在教室最后面,所以他们的身高平均数就会大于整个班级的身高平均数,这样的样本就不具有代表性了. 现实生活中,用简单的随机抽样方法选中的样本可能不愿意参加或者没空配合你作调查,所以,在不太影响样本代表性的前提下,人们也经常采取调查周围人的抽样方法.但是,要注意这些调查对象在总体中是否有代表性.例2 甲同学说:“6, 6, 6…啊!真的是6!你只要一直想某个数,就会掷出那个数.” 乙同学说:“不对,我发现我越是想要某个数就越得不到这个数,倒是不想它反而会掷出那个数.” 分析 这两位同学的说法都不正确.因为几次经验说明不了什么问题。在这里请同学掷骰子,来验证上述两位同学的说法不正确。例3 小强的自行车失窃了,他想知道所在地区每个家庭平均发生过几次自行车失窃事件.为此,他和同学们一起,调查了全校每个同学所在家庭发生过几次自行车失窃事件. 分析 这样抽样调查是不合适的.虽然他们调查的人数很多,但是因为排除了所在地区那些没有中学 生的家庭,所以他们的调查结果不能推广到所在地区的所有家庭。想一想:小强和他的同学们的调查反映哪些家庭失窃自行车的情况?这个例子告诉我们,开展调查之前,要仔细检查总体中的每个个体是否都有可能成为调查对象。例4、1936年,美国《文学文摘》杂志:根据1000万电话和从该杂志订户所收回的意见,断言兰登将以370:161的优势在总统竞选中击败罗斯福,但结果是,罗斯福当选了,《文学文摘》大丢面子,原因何在呢?原来,1936年能装电话和订阅《文学文摘》杂志的人,在经济上相对富裕,而引入不太高的的大多数选民选择了罗斯福。《文学文摘》的教训表明,抽样调查时,既要关注样本的大小,又要关注样本的代表性。二、练习判断下面这几个抽样调查选取样本的方法是否合适,并说明理由:1、一食品厂为了解其产品质量情况,在其生产流水线上每隔100包选取一包检查其质量;2、一手表厂欲了解6-11岁少年儿童戴手表的比例,周末来到一家业余艺术学校调查200名在那里学习的学生.为调查全校学生对购买正版书籍、唱片和软件的支持率,用简单随机抽样法在全校所有的班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍、唱片和软件的支持率;4、为调查一个省的环境污染情况,调查省会城市的环境污染情况三、小结通过本节课的学习,同学们应明白在做抽样调查时,所选取的样本应具有代表性,应避免遗漏某一群体,同时样本的容易要足够大,这样样本才能反映总体的特性,才能反映事物的本来面目。五、作业习题10.1 2、3、4随机数(学号)11125416794276成绩8086669167随机数(学号)成绩随机数(学号)X。X。K]成绩随机数(学号)成绩随机数(学号)成绩
初中数学北京课改版七年级下册9.1 总体与样本教案及反思: 这是一份初中数学北京课改版七年级下册9.1 总体与样本教案及反思,
北京课改版七年级下册6.4 乘法公式教案设计: 这是一份北京课改版七年级下册6.4 乘法公式教案设计,
数学七年级下册9.1 总体与样本教案: 这是一份数学七年级下册9.1 总体与样本教案,